Skip to main content

Mutational Analysis of Glutamate Transporters

  • Chapter
Book cover Neurotransmitter Transporters

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 175))

Abstract

Glutamate transporters are a family of transporters that regulate extracellular glutamate concentrations so as to maintain a dynamic and high-fidelity cell signalling process in the brain. Site-directed mutagenesis has been used to investigate various aspects of the structural and functional properties of these transporters to gain insights into how they work. This field of research has recently undergone a major development with the determination of the crystal structure of a bacterial glutamate transporter, and this chapter relates the results from mutagenesis experiments with what we now know about glutamate transporter structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akabas MH, Stauffer DA, Xu M, Karlin A (1992) Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258:307–310

    PubMed  CAS  Google Scholar 

  • Akabas MH, Kaufmann C, Archdeacon P, Karlin A (1994) Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron 13:919–927

    Article  PubMed  CAS  Google Scholar 

  • Arriza JL, Kavanaugh MP, Fairman WA, Wu YN, Murdoch GH, North RA, Amara SG (1993) Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem 268:15329–15332

    PubMed  CAS  Google Scholar 

  • Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    PubMed  CAS  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A 94:4155–4160

    Article  PubMed  CAS  Google Scholar 

  • Bendahan A, Armon A, Madani N, Kavanaugh MP, Kanner BI (2000) Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J Biol Chem 275:37436–37442

    Article  PubMed  CAS  Google Scholar 

  • Borre L, Kanner BI (2001) Coupled, but not uncoupled, fluxes in a neuronal glutamate transporter can be activated by lithium ions. J Biol Chem 276:40396–40401

    Article  PubMed  CAS  Google Scholar 

  • Borre L, Kanner BI (2004) Arginine 445 controls the coupling between glutamate and cations in the neuronal transporter EAAC-1. J Biol Chem 279:2513–2519

    Article  PubMed  CAS  Google Scholar 

  • Borre L, Kavanaugh MP, Kanner BI (2002) Dynamic equilibrium between coupled and uncoupled modes of a neuronal glutamate transporter. J Biol Chem 277:13501–13507

    Article  PubMed  CAS  Google Scholar 

  • Brocke L, Bendahan A, Grunewald M, Kanner BI (2002) Proximity of two oppositely oriented reentrant loops in the glutamate transporter GLT-1 identified by paired cysteine mutagenesis. J Biol Chem 277:3985–3992

    Article  PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108–112

    Article  PubMed  CAS  Google Scholar 

  • Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Article  PubMed  CAS  Google Scholar 

  • Grewer C, Grabsch E (2004) New inhibitors for the neutral amino acid transporter ASCT2 reveal its Na+-dependent anion leak. J Physiol 557:747–759

    Article  PubMed  CAS  Google Scholar 

  • Grewer C, Watzke N, Rauen T, Bicho A (2003) Is the glutamate residue Glu-373 the proton acceptor of the excitatory amino acid carrier 1? J Biol Chem 278:2585–2592

    Article  PubMed  CAS  Google Scholar 

  • Grunewald M, Kanner BI (2000) The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate. J Biol Chem 275:9684–9689

    Article  PubMed  CAS  Google Scholar 

  • Grunewald M, Bendahan A, Kanner BI (1998) Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron 21:623–632

    Article  PubMed  CAS  Google Scholar 

  • Grunewald M, Menaker D, Kanner BI (2002) Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1. J Biol Chem 277:26074–26080

    Article  PubMed  CAS  Google Scholar 

  • Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter [see comments]. Nature 360:467–471

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh MP, Bendahan A, Zerangue N, Zhang Y, Kanner BI (1997) Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J Biol Chem 272:1703–1708

    Article  PubMed  CAS  Google Scholar 

  • Larsson HP, Picaud SA, Werblin FS, Lecar H (1996) Noise analysis of the glutamate-activated current in photoreceptors. Biophys J 70:733–742

    Article  PubMed  CAS  Google Scholar 

  • Leighton BH, Seal RP, Shimamoto K, Amara SG (2002) A hydrophobic domain in glutamate transporters forms an extracellular helix associated with the permeation pathway for substrates. J Biol Chem 277:29847–29855

    Article  PubMed  CAS  Google Scholar 

  • Melzer N, Biela A, Fahlke C (2003) Glutamate modifies ion conduction and voltage-dependent gating of excitatory amino acid transporter-associated anion channels. J Biol Chem 278:50112–50119

    Article  PubMed  CAS  Google Scholar 

  • Mitrovic AD, Amara SG, Johnston GA, Vandenberg RJ (1998) Identification of functional domains of the human glutamate transporters EAAT1 and EAAT2. J Biol Chem 273:14698–14706

    Article  PubMed  CAS  Google Scholar 

  • Mitrovic AD, Plesko F, Vandenberg RJ (2001) Zn(2+) inhibits the anion conductance of the glutamate transporter EAAT4. J Biol Chem 276:26071–26076

    Article  PubMed  CAS  Google Scholar 

  • Otis TS, Jahr CE (1998) Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci 18:7099–7110

    PubMed  CAS  Google Scholar 

  • Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain L-glutamate transporter [published erratum appears in Nature 1992 Dec 24–31; 360(6406):768] [see comments]. Nature 360:464–467

    Article  PubMed  CAS  Google Scholar 

  • Pines G, Zhang Y, Kanner BI (1995) Glutamate 404 is involved in the substrate discrimination of GLT-1, a (Na+ + K+)-coupled glutamate transporter from rat brain. J Biol Chem 270:17093–17097

    Article  PubMed  CAS  Google Scholar 

  • Ryan RM, Vandenberg RJ (2002) Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J Biol Chem 277:13494–13500

    Article  PubMed  CAS  Google Scholar 

  • Ryan RM, Mitrovic AD, Vandenberg RJ (2004) The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J Biol Chem 279:20742–20751

    Article  PubMed  CAS  Google Scholar 

  • Seal RP, Amara SG (1998) A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation. Neuron 21:1487–1498

    Article  PubMed  CAS  Google Scholar 

  • Seal RP, Daniels GM, Wolfgang WJ, Forte MA, Amara SG (1998) Identification and characterization of a cDNA encoding a neuronal glutamate transporter from Drosophila melanogaster. Receptors Channels 6:51–64

    PubMed  CAS  Google Scholar 

  • Seal RP, Leighton BH, Amara SG (2000) A model for the topology of excitatory amino acid transporters determined by the extracellular accessibility of substituted cysteines. Neuron 25:695–706

    Article  PubMed  CAS  Google Scholar 

  • Seal RP, Shigeri Y, Eliasof S, Leighton BH, Amara SG (2001) Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance. Proc Natl Acad Sci U S A 98:15324–15329

    Article  PubMed  CAS  Google Scholar 

  • Shafqat S, Tamarappoo BK, Kilberg MS, Puranam RS, McNamara JO, Guadano-Ferraz A, Fremeau RT Jr (1993) Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J Biol Chem 268:15351–15355

    PubMed  CAS  Google Scholar 

  • Sonders MS, Amara SG (1996) Channels in transporters. Curr Opin Neurobiol 6:294–302

    Article  PubMed  CAS  Google Scholar 

  • Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A 89:10955–10959

    Article  PubMed  CAS  Google Scholar 

  • Sullivan R, Rauen T, Fischer F, Wiessner M, Grewer C, Bicho A, Pow DV (2004) Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia 45:155–169

    Article  PubMed  Google Scholar 

  • Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271:14883–14890

    Article  PubMed  CAS  Google Scholar 

  • Utsunomiya-Tate N, Endou H, Kanai Y (1997) Tissue specific variants of glutamate transporter GLT-1. FEBS Lett 416:312–316

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg RJ, Arriza JL, Amara SG, Kavanaugh MP (1995) Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J Biol Chem 270:17668–17671

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg RJ, Mitrovic AD, Chebib M, Balcar VJ, Johnston GA (1997) Contrasting modes of action of methylglutamate derivatives on the excitatory amino acid transporters, EAAT1 and EAAT2. Mol Pharmacol 51:809–815

    PubMed  CAS  Google Scholar 

  • Vandenberg RJ, Mitrovic AD, Johnston GA (1998a) Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions. Mol Pharmacol 54:189–196

    PubMed  CAS  Google Scholar 

  • Vandenberg RJ, Mitrovic AD, Johnston GA (1998b) Serine-O-sulphate transport by the human glutamate transporter, EAAT2. Br J Pharmacol 123:1593–1600

    Article  PubMed  CAS  Google Scholar 

  • Wadiche JI, Kavanaugh MP (1998) Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18:7650–7661

    PubMed  CAS  Google Scholar 

  • Wadiche JI, Amara SG, Kavanaugh MP (1995a) Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728

    Article  PubMed  CAS  Google Scholar 

  • Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995b) Kinetics of a human glutamate transporter. Neuron 14:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Watzke N, Rauen T, Bamberg E, Grewer C (2000) On the mechanism of proton transport by the neuronal excitatory amino acid carrier 1. J Gen Physiol 116:609–622

    Article  PubMed  CAS  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  PubMed  CAS  Google Scholar 

  • Zarbiv R, Grunewald M, Kavanaugh MP, Kanner BI (1998) Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue. J Biol Chem 273:14231–14237

    Article  PubMed  CAS  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996a) ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J Biol Chem 271:27991–27994

    Article  PubMed  CAS  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996b) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Kanner BI (1999) Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter. Proc Natl Acad Sci U S A 96:1710–1715

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Bendahan A, Zarbiv R, Kavanaugh MP, Kanner BI (1998) Molecular determinant of ion selectivity of a (Na+ + K+)-coupled rat brain glutamate transporter. Proc Natl Acad Sci U S A 95:751–755

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vandenberg, R.J. (2006). Mutational Analysis of Glutamate Transporters. In: Sitte, H.H., Freissmuth, M. (eds) Neurotransmitter Transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29784-7_6

Download citation

Publish with us

Policies and ethics