Skip to main content

Acute Regulation of Sodium-Dependent Glutamate Transporters: A Focus on Constitutive and Regulated Trafficking

  • Chapter
Neurotransmitter Transporters

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 175))

Abstract

The acidic amino acid glutamate activates a family of ligand-gated ion channels to mediate depolarization that can be as short-lived as a few milliseconds and activates a family of G protein-coupled receptors that couple to both ion channels and other second messenger pathways. Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and is required for essentially all motor, sensory, and cognitive functions. In addition, glutamate-mediated signaling is required for development and the synaptic plasticity thought to underlie memory formation and retrieval. The levels of glutamate in brain approach 10 mmol/kg and most cells in the CNS express at least one of the receptor subtypes. Unlike acetylcholine that mediates “rapid” excitatory neurotransmission at the neuromuscular junction, there is no evidence for extracellular inactivation of glutamate. Instead, glutamate is cleared by a family of Na+-dependent transport systems that are found on glial processes that sheath the synapse and found on the pre- and postsynaptic elements of neurons. These transporters ensure crisp excitatory transmission by maintaining synaptic concentrations below those required for tonic activation of glutamate receptors under baseline conditions (∼ µM) and serve to limit activation of glutamate receptors after release. During the past few years, it has become clear that like many of the other neurotransmitter transporters discussed in this volume of Handbook of Experimental Pharmacology, the activity of these transporters can be rapidly regulated by a variety of effectors. In this chapter, a broad overview of excitatory signaling will be followed by a brief introduction to the family of Na+-dependent glutamate transporters and a detailed discussion of our current understanding of the mechanisms that control transporter activity. The focus will be on our current understanding of the mechanisms that could regulate transporter activity within minutes, implying that this regulation is independent of transcriptional or translational control mechanisms. The glutamate transporters found in forebrain are regulated by redistributing the proteins to or from the plasma membrane; the signals involved and the net effects on transporter activity are being defined. In addition, there is evidence to suggest that the intrinsic activity of these transporters is also regulated by mechanisms that are independent of transporter redistribution; less is known about these events. As this field progresses, it should be possible to determine how this regulation affects physiologic and pathologic events in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  • Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19:1297–1308

    Article  PubMed  CAS  Google Scholar 

  • Blasi AD, Conn PJ, Pin J, Nicoletti F (2001) Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 22:114–120

    Article  PubMed  Google Scholar 

  • Boehmer C, Henke G, Schniepp R, Palmada M, Rothsetin JD, Broer S, Lang F (2003) Regulation of the glutamate transporter EAAT1 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid-inducible kinase isoforms SGK1/3 and protein kinase B. J Neurochem 86:1181–1188

    Article  PubMed  CAS  Google Scholar 

  • Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3:267–277

    Article  PubMed  CAS  Google Scholar 

  • Casado M, Zafra F, Aragón C, Giménez C (1991) Activation of high-affinity uptake of glutamate by phorbol esters in primary glial cell cultures. J Neurochem 57:1185–1190

    PubMed  CAS  Google Scholar 

  • Chaudhry FA, Lehre KP, Campagne MVL, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, Tanaka K, Irwin N, Aoki C, Rosenberg PA (2004) The glutamate transporter GLT1a is expressed in excitatory terminals of mature hippocampal neurons. J Neurosci 24:1136–1148

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379

    PubMed  CAS  Google Scholar 

  • Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  PubMed  CAS  Google Scholar 

  • Cholet N, Pellerin L, Magistretti PJ, Hamel E (2002) Similar perisynaptoic glial localization for the Na+,K+-ATPase a2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb. Cortex 12:515–525

    Article  PubMed  CAS  Google Scholar 

  • Claing A, Laporte SA, Caron MG, Lefkowitz RJ (2002) Endocytosis of G protein-coupled receptors; roles of G protein-coupled receptor kinases and β-arrestin proteins. Prog Neurobiol 66:61–79

    Article  PubMed  CAS  Google Scholar 

  • Coco S, Verderio C, Trotti D, Rothstein JD (1997) Non-synaptic localization of the glutamate transporter EAAC1 in cultured hippocampal neurons. Eur J Neurosci 9:1902–1910

    Article  PubMed  CAS  Google Scholar 

  • Conti F, Weinberg RJ (1999) Shaping excitation at glutamatergic synapses. Trends Neurosci 22:451–458

    Article  PubMed  CAS  Google Scholar 

  • Conti F, DiBiasi S, Minelli A, Rothstein JD, Melone M (1998) EAAC1, ahigh-affinity glutamate transporter, is localized to astrocytes and GABAergic neurons besides pyramidal cells in the rat cerebral cortex. Cereb. Cortex 8:108–116

    Article  PubMed  CAS  Google Scholar 

  • Czech MP, Corvera S (1999) Signaling mechanisms that regulate glucose transport. J Biol Chem 274:1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Daniels GM, Amara SG (1998) Selective labeling of neurotransmitter transporters at the cell surface. Methods Enzymol 296:307–318

    PubMed  CAS  Google Scholar 

  • Davis KE, Straff DJ, Weinstein EA, Bannerman PG, Correale DM, Rothstein JD, Robinson MB (1998) Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J Neurosci 18:2475–2485

    PubMed  CAS  Google Scholar 

  • Diamond JS (2001) Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. J Neurosci 21:8328–8338

    PubMed  CAS  Google Scholar 

  • Doble A (1999) The role of excitotoxicity in neurodegenerative disease: Implications for therapy. Pharmacol Ther 81:163–221

    Article  PubMed  CAS  Google Scholar 

  • Dowd LA, Robinson MB (1996) Rapid stimulation of EAAC1-mediated Na+-dependent L-glutamate transport activity in C6 glioma by phorbol ester. J Neurochem 67:508–516

    Article  PubMed  CAS  Google Scholar 

  • Dowd LA, Coyle AJ, Rothstein JD, Pritchett DB, Robinson MB (1996) Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus Oocytes expressing excitatory amino acid carrier 1 (EAAC1). Mol Pharmacol 49:465–473

    PubMed  CAS  Google Scholar 

  • Duan S, Anderson CM, Stein BA, Swanson RA (1999) Glutamate induces rapid upregulation of glutamate transport and cell-surface expression of GLAST. J Neurosci 19:10193–10200

    PubMed  CAS  Google Scholar 

  • Dugan LL, Bruno VMG, Amagasu SM, Giffard RG (1995) Glia modulate the response of murine cortical neurons to excitotoxicity: Glia exacerbate AMPA neurotoxicity. J Neurosci 15:4545–4555

    PubMed  CAS  Google Scholar 

  • Ferguson SSG (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    PubMed  CAS  Google Scholar 

  • Fournier KM, González MI, Robinson MB (2004) Rapid trafficking of the neuronal glutamate transporter, EAAC1: Evidence for distinct trafficking pathways differentially regulated by protein kinase C and platelet-derived growth factor. J Biol Chem 279:34505–34513

    Article  PubMed  CAS  Google Scholar 

  • Furuta A, Martin LJ, Lin CL, Dykes-Hoberg M, Rothstein JD (1997) Cellular and synaptic localization of the neuronal glutamate transporters EAAT3 and EAAT4. Neuroscience 81:1031–1042

    Article  PubMed  CAS  Google Scholar 

  • Gamboa C, Ortega A (2002) Insulin-like growth factor-1 increases activity and surface levels of the GLAST subtype of glutamate transporter. Neurochem Int 40:397–403

    Article  PubMed  CAS  Google Scholar 

  • Garlin AB, Sinor AD, Sinor JD, Jee SH, Grinspan JB, Robinson MB (1995) Pharmacology of sodium-dependent high-affinity L-[3H]glutamate transport in glial cultures. J Neurochem 64:2572–2580

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J (1985) Cellular uptake disguises action of L-glutamate on N-methyl-D-aspartate receptors. Br J Pharmacol 85:297–307

    PubMed  CAS  Google Scholar 

  • Gebhardt C, Körner R, Heinemann U (2002) Delayed anoxic depolarizations in hippocampal neurons of mice lacking the excitatory amino acid carrier 1. J Cereb Blood Flow Metab 22:569–575

    Article  PubMed  CAS  Google Scholar 

  • Gegelashgvili G, Robinson MB, Trotti D, Rauen T (2001) Regulationof glutamate transporters in health and disease. Prog Brain Res 132:267–286

    Article  Google Scholar 

  • González MI, Kazanietz MG, Robinson MB (2002) Regulation of the neuronal glutamate transporter excitatory amino acid carrier-1 (EAAC1) by different protein kinase C subtypes. Mol Pharmacol 62:901–910

    Article  PubMed  Google Scholar 

  • González MI, Bannerman PG, Robinson MB (2003) Phorbolmyristate acetate-dependent interaction of protein kinase Ca and the neuronal glutamate transporter EAAC1. JNeurosci 23:5589–5593

    Google Scholar 

  • Guillet BA, Velly LJ, Canolle B, F MM, Nieoullon AL, Pisano P (2005) Differential regulation by protein kinases of activity and cell surface expression of glutamate transporters in neuron-enriched cultures. Neurochem Int 46:337–346

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Lai L, Butchbach ME, Stockinger MP, Shan X, Bishop GA, Lin CL (2003) Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet 12:2519–2532

    Article  PubMed  CAS  Google Scholar 

  • Hamann M, Rossi DJ, Marie H, Attwell D (2002) Knocking out the glial glutamate transporter GLT-1 reduces glutamate uptake but does not affect hippocampal glutamate dynamics in early simulated ischemia. Eur J Neurosci 15:308–314

    Article  PubMed  Google Scholar 

  • He Y, Janssen WGM, Rothstein JD, Morrison JH (2000) Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit GluR2 in the rat hippocampus. J Comp Neurol 418:255–269

    Article  PubMed  CAS  Google Scholar 

  • He Y, Hof PH, Janssen WGM, Rothstein JD, Morrison JH (2001) Differential synaptic localization of GluR2 and EAAC1 in them acaque monkey entorhinal cortex: a postembedding immunogold study. Neurosci Lett 311:161–164

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Zuo Z (2005) Isoflurane induces a protein kinase Ca-dependent increase in cell surface protein level and activity of glutamate transporter type 3. Mol Pharmacol 67:1522–1533

    Article  PubMed  CAS  Google Scholar 

  • Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14:346–352

    Article  PubMed  CAS  Google Scholar 

  • Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic injury? Lancet Neurol 1:383–386

    Article  PubMed  CAS  Google Scholar 

  • Johnson G, Moore SW (2000) Cholinesterase-like catalytic antibodies: reaction with substrates and inhibitors. Mol Immunol 37:707–719

    Article  PubMed  CAS  Google Scholar 

  • Kalandadze A, Wu Y, Robinson MB (2002) Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxylterminal domain and partial dependence on serine 486. J Biol Chem 277:45741–45750

    Article  PubMed  CAS  Google Scholar 

  • Krizman-Genda E, Gonzalez MI, Zelenaia O, Robinson MB (2005) Evidence that Akt mediates platelet-derived growth factor-dependent increases in activity and surface expression of the neuronal glutamate transporter, EAAC1. Neuropharmacology 49:872–882

    Article  PubMed  CAS  Google Scholar 

  • Kugler P, Schmitt A (1999) Glutamate transporter EAAC1 is expressed in neurons and glial cells in the rat nervous system. Glia 27:129–142

    Article  PubMed  CAS  Google Scholar 

  • Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757

    PubMed  CAS  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: Quantitative and immunocyto-chemical observations. J Neurosci 15:1835–1853

    PubMed  CAS  Google Scholar 

  • Leonova J, Thorlin T, ND A, Eriksson PS, Ronnback L, Hansson E (2001) Endothelin-1 decreases glutamate uptake in primary cultured rat astrocytes. Am J Physiol Cell Physiol 281:C1495–C1503

    PubMed  CAS  Google Scholar 

  • Levenson J, Weeber E, Selcher JC, Kategaya LS, Sweatt JD, Eskin A (2001) Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nat Neurosci 5:155–161

    Article  CAS  Google Scholar 

  • Levi G, Raiteri M (1993) Carrier-mediated release of neurotransmitters. Trends Neurosci 16:415–419

    Article  PubMed  CAS  Google Scholar 

  • Loder MK, Melikian HE (2003) The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem 278:22168–22174

    Article  PubMed  CAS  Google Scholar 

  • Marchese A, Chen C, Kim Y-M, Benovic JL (2003) The ins and outs of G-protein-coupled receptor trafficking. Trends Biochem Sci 28:369–376

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Slot JW, James DE (1999) GLUT4 trafficking in insulin-sensitive cells. Cell Biochem Biophys 30:89–113

    Article  PubMed  CAS  Google Scholar 

  • McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 4:291–297

    Article  PubMed  CAS  Google Scholar 

  • Najimi M, Maloteaux JM, Hermans E (2002) Cytoskeleton-related trafficking of the EAAC1 glutamate transporter after activation of the G(q/11)-coupled neurotensin receptor NTS1. FEBS Lett 523:224–228

    Article  PubMed  CAS  Google Scholar 

  • Najimi M, Maloteaux J-M, Hermans E (2005) Pertussis toxin-sensitive modulation of glutamate transport by endothelin-1 type A receptors in glioma cells. Biochim Biophys Acta 1668:195–202

    Article  PubMed  CAS  Google Scholar 

  • Obrenovitch TP, Urenjak J, Zilkha E, Jay TM (2000) Excitotoxicity in neurological disorders—the glutamate paradox. Int J Dev Neurosci 18:281–287

    Article  PubMed  CAS  Google Scholar 

  • Otis TS, Wu Y-C, Trussell LO (1996) Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. J Neurosci 16:1634–1644

    PubMed  CAS  Google Scholar 

  • Otis TS, Brasnjo G, Dzubay JA, Pratap M (2004) Interactions between glutamate transporters and metabotropic glutamate receptors at excitatory synapses in the cerebellar cortex. Neurochem Int 45:537–544

    Article  PubMed  CAS  Google Scholar 

  • Peghini P, Janzen J, Stoffel W (1997) Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J 16:3822–3832

    Article  PubMed  CAS  Google Scholar 

  • Poitry-Yamate CL, Vutskits L, Rauen T (2002) Neuronal-induced and glutamate-dependent activation of glial glutamate transporter function. J Neurochem 82:987–997

    Article  PubMed  CAS  Google Scholar 

  • Robinson MB, Dowd LA (1997) Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv Pharmacol 37:69–115

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg PA, Amin S, Leitner M (1992) Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J Neurosci 12:56–61

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger M, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Hoberg MD, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su Z-Z, Gupta P, Fisher PB (2005) B-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  PubMed  CAS  Google Scholar 

  • Royle SJ, Murrell-Lagnado RD (2002) Constitutive cycling: a general mechanism to regulate cell surface proteins. Bioessays 25:39–46

    Article  CAS  Google Scholar 

  • Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    PubMed  CAS  Google Scholar 

  • Schmitt A, Asan E, Lesch K-P, Kugler P (2002) A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience 109:45–61

    Article  PubMed  CAS  Google Scholar 

  • Schniepp R, Kohler K, Ladewig T, Guenther E, Henke G, Palmada M, Boehmer C, Rothsetin JD, Broer S, Lang F (2004) Retinal colocalization and in vitro interaction of the glutamate receptor EAAT3 and the serum-and glucocorticoid-inducible kinase SGK1. Invest Ophthalmol 45:1442–1449

    Article  Google Scholar 

  • Schoepp DD, Conn PJ (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14:13–20

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Pak DT (2000) Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu Rev Physiol 62:755–778

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Article  PubMed  CAS  Google Scholar 

  • Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 45:250–265

    Article  PubMed  CAS  Google Scholar 

  • Sims KD, Robinson MB (1999) Expression patterns and regulation of glutamate transporters in the developing and adult nervous system. Crit Rev Neurobiol 13:169–197

    PubMed  CAS  Google Scholar 

  • Sims KD, Straff DJ, Robinson MB (2000) Platelet-derived growth factor rapidly increases activity and cell surface expression of the EAAC1 subtype of glutamate transporters through activation of phosphatidylinositol 3-kinase. J Biol Chem 274:5228–5327

    Article  Google Scholar 

  • Sorkina T, Hoover BR, Zahniser NR, Sorkin A (2005) Constitutive and protein kinase C-induced internalization of the dopamine transporter ismediated by a clathrin-dependent mechanism. Traffic 6:157–170

    Article  PubMed  CAS  Google Scholar 

  • Spooren W, Ballard T, Gasparini F, Amalric M, Mutel V, Schreiber R (2003) Insight into the function of group I and group II metabotropic glutamate (mGluR) receptors: behavioural characterization and implications for treatment of CNS disorders. Behav Pharmacol 14:257–277

    PubMed  CAS  Google Scholar 

  • Susarla BS, Seal RP, Zelenaia O, Watson DJ, Wolfe JH, Amara SG, Robinson MB (2004) Differential regulation of GLAST immunoreactivity and activity by protein kinase C: evidence for modification of amino and carboxy termini. J Neurochem 91:1151–1163

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    PubMed  CAS  Google Scholar 

  • Tanaka J, Ichikawa R, Watanabe M, Tanaka K, Inoue Y (1997a) Extra-junctional localization of glutamate transporter EAAT4 at excitatory Purkinje cell synapses. Neuroreport 8:2461–2464

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997b) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  PubMed  CAS  Google Scholar 

  • Timmerman W, Westerink BHC (1997) Brain microdialysis of GABA amd glutamate: What does it signify? Synapse 27:242–261

    Article  PubMed  CAS  Google Scholar 

  • Tong G, Jahr CE (1994) Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13:1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Trotti D, Peng J-B, Dunlop J, Hediger MA (2001) Inhibition of the glutamate transporter EAAC1 expressed in Xenopus oocytes by phorbol esters. Brain Res 914:196–203

    Article  PubMed  CAS  Google Scholar 

  • Vermeiren C, Najimi M, Vanhoutte N, Tilleux S, Hemptinne Id, Maloteauz J-M, Hermans E (2005) Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 94:405–416

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES, Kiss JP (1998) Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions. Hippocampus 8:566–607

    Article  PubMed  CAS  Google Scholar 

  • Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Quick MW (2005) Trafficking of the plasmamembrane gamma-aminobutyric acid transporter, GAT1. Size and rates of an acutely recycling pool. J Biol Chem 280:18703–18709

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li W, Mitchell CK, Carter-Dawson L (2003) Activation of protein kinase C reduces GLAST in the plasma membrane of rat Muller cells in primary culture. Vis Neurosci 20:611–619

    Article  PubMed  Google Scholar 

  • Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S-i, Kawachima N, Hori S, Takimoto M, Wada K, Tanaka K (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10:976–988

    Article  PubMed  CAS  Google Scholar 

  • Watson RT, Kanzaki M, Pessin JE (2000) Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 25:177–204

    Article  CAS  Google Scholar 

  • Watson RT, Khan AH, Furukawa M, Hou JC, Li L, Kanzaki M, Okada S, Kandror KV, Pessin JE (2004) Entry of newly synthesized GLUT4 into the insulin-responsive storage compartment is GGA dependent. EMBO J 23:2059–2070

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Kilberg MS (2002) Biosynthesis, intracellular targeting, and degradation of the EAAC1 glutamate/aspartate transporter in C6 glioma cells. J Biol Chem 277:38350–38357

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Kinney GA, Spain WJ, Breitner JCS, Cook DG (2004) Presenilin-1 and intracellular calcium stores regulate neuronal glutamate uptake. J Neurochem 88:1361–1372

    Article  PubMed  CAS  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Fukuda M, Bockstaele EV, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101:9441–9446

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Sutherland ML (2004) Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity. J Neurosci 24:6301–6306

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinson, M.B. (2006). Acute Regulation of Sodium-Dependent Glutamate Transporters: A Focus on Constitutive and Regulated Trafficking. In: Sitte, H.H., Freissmuth, M. (eds) Neurotransmitter Transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29784-7_13

Download citation

Publish with us

Policies and ethics