Skip to main content

Zn2+ Modulation of Neurotransmitter Transporters

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 175))

Abstract

Neurotransmitter transporters located at the presynaptic or glial cell membrane are responsible for the stringent and rapid clearance of the transmitter from the synapse, and hence they terminate signaling and control the duration of synaptic inputs in the brain. Two distinct families of neurotransmitter transporters have been identified based on sequence homology: (1) the neurotransmitter sodium symporter family (NSS), which includes the Na+/Cl--dependent transporters for dopamine, norepinephrine, and serotonin; and (2) the dicarboxylate/amino acid cation symporter family (DAACS), which includes the Na+-dependent glutamate transporters (excitatory amino acid transporters; EAAT). In this chapter, we describe how the identification of endogenous Zn2+-binding sites, as well as engineering of artificial Zn2+-binding sites both in the Na+/Cl--dependent transporters and in the EAATs, have proved to be an important tool for studying the molecular function of these proteins. We also interpret the current available data on Zn2+-binding sites in the context of the recently published crystal structures. Moreover, we review how the identification of endogenous Zn2+-binding sites has indirectly suggested the possibility that several of the transporters are modulated by Zn2+ in vivo, and thus that Zn2+ can play a role as a neuromodulator by affecting the function of neurotransmitter transporters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts IL, Nadassy K, Wodak SJ (1998) Analysis of zinc binding sites in protein crystal structures. Protein Sci 7:1700–1716

    PubMed  CAS  Google Scholar 

  • Amara SG, Arriza JL (1993) Neurotransmitter transporters: three distinct gene families. Curr Opin Neurobiol 3:337–344

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Fontana AC (2002) Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 41:313–318

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16:73–93

    Article  PubMed  CAS  Google Scholar 

  • Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    Article  PubMed  CAS  Google Scholar 

  • Bloomenthal AB, Goldwater E, Pritchett DB, Harrison NL (1994) Biphasic modulation of the strychnine-sensitive glycine receptor by Zn2+. Mol Pharmacol 46:1156–1159

    PubMed  CAS  Google Scholar 

  • Bruss M, Hammermann R, Brimijoin S, Bonisch H (1995) Antipeptide antibodies confirm the topology of the human norepinephrine transporter. J Biol Chem 270:9197–9201

    Article  PubMed  CAS  Google Scholar 

  • Busselberg D, Platt B, Michael D, Carpenter DO, Haas HL (1994) Mammalian voltage-activated calcium channel currents are blocked by Pb2+, Zn2+, and Al3+. J Neurophysiol 71:1491–1497

    PubMed  CAS  Google Scholar 

  • Chen JG, Rudnick G (2000) Permeation and gating residues in serotonin transporter. Proc Natl Acad Sci U S A 97:1044–1049

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Liu-Chen S, Rudnick G (1998) Determination of external loop topology in the serotonin transporter by site-directed chemical labeling. J Biol Chem 273:12675–12681

    Article  PubMed  CAS  Google Scholar 

  • Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG (2004) Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci 24:8678–8689

    Article  PubMed  CAS  Google Scholar 

  • Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM, Niznik HB, Levey AI (1995) The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 15:1714–1723

    PubMed  CAS  Google Scholar 

  • Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, Mufson EJ, Mash DC, Levey AI (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409:38–56

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Kfir E, Lee W, Eskandari S, Nelson N (2005) Zinc inhibition of γ-aminobutyric acid transporter 4 (GAT4) reveals a link between excitatory and inhibitory neurotransmission. Proc Natl Acad Sci U S A 102:6154–6159

    Article  PubMed  CAS  Google Scholar 

  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci U S A 96:1716–1721

    Article  PubMed  CAS  Google Scholar 

  • Cole TB, Martyanova A, Palmiter RD (2001) Removing zinc from synaptic vesicles does not impair spatial learning, memory, or sensorimotor functions in the mouse. Brain Res 891:253–265

    Article  PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  • Draguhn A, Verdorn TA, Ewert M, Seeburg PH, Sakmann B (1990) Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron 5:781–788

    Article  PubMed  CAS  Google Scholar 

  • Eulenburg V, Armsen W, Betz H, Gomeza J (2005) Glycine transporters: essential regulators of neurotransmission. Trends Biochem Sci 30:325–333

    Article  PubMed  CAS  Google Scholar 

  • Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Article  PubMed  CAS  Google Scholar 

  • Falkenburger BH, Barstow KL, Mintz IM (2001) Dendrodendritic inhibition through reversal of dopamine transport. Science 293:2465–2470

    Article  PubMed  CAS  Google Scholar 

  • Fava M, Kendler KS (2000) Major depressive disorder. Neuron 28:335–341

    Article  PubMed  CAS  Google Scholar 

  • Ferrer JV, Javitch JA (1998) Cocaine alters the accessibility of endogenous cysteines in putative extracellular and intracellular loops of the human dopamine transporter. Proc Natl Acad Sci U S A 95:9238–9243

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Bush AI (2001) Synaptically released zinc: physiological functions and pathological effects. Biometals 14:353–366

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S–1483S

    PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Mohn AR, Bohn LM, Caron MG (2001) Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter. Proc Natl Acad Sci U S A 98:11047–11054

    Article  PubMed  CAS  Google Scholar 

  • Galli A, DeFelice LJ, Duke BJ, Moore KR, Blakely RD (1995) Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J Exp Biol 198:2197–2212

    PubMed  CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI (1997) Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol 388:211–227

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, Heinemann S (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10:943–954

    Article  PubMed  CAS  Google Scholar 

  • Holst B, Elling CE, Schwartz TW (2002) Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors. J Biol Chem 277:47662–47670

    Article  PubMed  CAS  Google Scholar 

  • Horenstein J, Akabas MH (1998) Location of a high affinity Zn2+ binding site in the channel of alpha1beta1 gamma-aminobutyric acid A receptors. Mol Pharmacol 53:870–877

    PubMed  CAS  Google Scholar 

  • Huang EP (1997) Metal ions and synaptic transmission: think zinc. Proc Natl Acad Sci U S A 94:13386–13387

    Article  PubMed  CAS  Google Scholar 

  • Ingram SL, Prasad BM, Amara SG (2002) Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons. Nat Neurosci 5:971–978

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol 41:571–591

    PubMed  CAS  Google Scholar 

  • Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970

    Article  PubMed  CAS  Google Scholar 

  • Ju P, Aubrey KR, Vandenberg RJ (2004) Zn2+ inhibits glycine transport by glycine transporter subtype 1b. J Biol Chem 279:22983–22991

    Article  PubMed  CAS  Google Scholar 

  • Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A (2003) Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem 278:12070–12077

    Article  PubMed  CAS  Google Scholar 

  • Laube B, Kuhse J, Rundstrom N, Kirsch J, Schmieden V, Betz H (1995) Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors. J Physiol 483:613–619

    PubMed  CAS  Google Scholar 

  • Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28:325–334

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Hough CJ, Frederickson CJ, Sarvey JM (2001a) Induction of mossy fiber→CA3 long-term potentiation requires translocation of synaptically released Zn2+. J Neurosci 21:8015–8025

    PubMed  CAS  Google Scholar 

  • Li Y, Hough CJ, Suh SW, Sarvey JM, Frederickson CJ (2001b) Rapid Translocation of Zn2+ from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol 86:2597–2604

    PubMed  CAS  Google Scholar 

  • Lin DD, Cohen AS, Coulter DA (2001) Zinc-induced augmentation of excitatory synaptic currents and glutamate receptor responses in hippocampal CA3 neurons. JNeurophysiol 85:1185–1196

    CAS  Google Scholar 

  • Loland CJ, Norregaard L, Gether U (1999) Defining proximity relationships in the tertiary structure of the dopamine transporter. Identification of a conserved glutamic acid as a third coordinate in the endogenous Zn(2+)-binding site. J Biol Chem 274:36928–36934

    Article  PubMed  CAS  Google Scholar 

  • Loland CJ, Norregaard L, Litman T, Gether U (2002) Generation of an activating Zn(2+) switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. Proc Natl Acad Sci U S A 99:1683–1688

    Article  PubMed  CAS  Google Scholar 

  • Loland CJ, Granas C, Javitch JA, Gether U (2004) Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding. J Biol Chem 279:3228–3238

    Article  PubMed  CAS  Google Scholar 

  • MacAulay N, Bendahan A, Loland CJ, Zeuthen T, Kanner BI, Gether U (2001) Engineered Zn(2+) switches in the gamma-aminobutyric acid (GABA) transporter-1. Differential effects on GABA uptake and currents. J Biol Chem 276:40476–40485

    Article  PubMed  CAS  Google Scholar 

  • Mager S, Naeve J, Quick M, Labarca C, Davidson N, Lester HA (1993) Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10:177–188

    Article  PubMed  CAS  Google Scholar 

  • Mager S, Min C, Henry DJ, Chavkin C, Hoffman BJ, Davidson N, Lester HA (1994) Conducting states of a mammalian serotonin transporter. Neuron 12:845–859

    Article  PubMed  CAS  Google Scholar 

  • Meinild AK, Sitte HH, Gether U (2004) Zinc potentiates an uncoupled anion conductance associated with the dopamine transporter. J Biol Chem 279:49671–49679

    Article  PubMed  CAS  Google Scholar 

  • Melikian HE, McDonald JK, Gu H, Rudnick G, Moore KR, Blakely RD (1994) Human norepinephrine transporter. Biosynthetic studies using a site-directed polyclonal antibody. J Biol Chem 269:12290–12297

    PubMed  CAS  Google Scholar 

  • Mitchell SM, Lee E, Garcia ML, Stephan MM (2004) Structure and function of extracellular loop 4 of the serotonin transporter as revealed by cysteine-scanning mutagenesis. J Biol Chem 279:24089–24099

    Article  PubMed  CAS  Google Scholar 

  • Mitrovic AD, Plesko F, Vandenberg RJ (2001) Zn2+ inhibits the anion conductance of the glutamate transporter EAAT4. J Biol Chem 276:26071–26076

    Article  PubMed  CAS  Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16:436–447

    PubMed  CAS  Google Scholar 

  • Norregaard L, Frederiksen D, Nielsen EO, Gether U (1998) Delineation of an endogenous zinc-binding site in the human dopamine transporter. EMBO J 17:4266–4273

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci U S A 93:14934–14939

    Article  PubMed  CAS  Google Scholar 

  • Peters S, Koh J, Choi DW (1987) Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science 236:589–593

    PubMed  CAS  Google Scholar 

  • Pifl C, Rebernik P, Kattinger A, Reither H (2004) Zn2+ modulates currents generated by the dopamine transporter: parallel effects on amphetamine-induced charge transfer and release. Neuropharmacology 46:223–231

    Article  PubMed  CAS  Google Scholar 

  • Rassendren FA, Lory P, Pin JP, Nargeot J (1990) Zinc has opposite effects on NMDA and non-NMDA receptors expressed in Xenopus oocytes. Neuron 4:733–740

    Article  PubMed  CAS  Google Scholar 

  • Regan L (1995) Protein design: novel metal-binding sites. Trends Biochem Sci 20:280–285

    Article  PubMed  CAS  Google Scholar 

  • Richfield EK (1993) Zinc modulation of drug binding, cocaine affinity states, and dopamine uptake on the dopamine uptake complex. Mol Pharmacol 43:100–108

    PubMed  CAS  Google Scholar 

  • Risso S, DeFelice LJ, Blakely RD (1996) Sodium-dependent GABA-induced currents in GAT1-transfected HeLa cells. J Physiol 490:691–702

    PubMed  CAS  Google Scholar 

  • Rosenkilde MM, Lucibello M, Holst B, Schwartz TW (1998) Natural agonist enhancing bis-His zinc-site in transmembrane segment V of the tachykinin NK3 receptor. FEBS Lett 439:35–40

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Baumann MH (2003) Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 479:23–40

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su Zz, Gupta P, Fisher PB (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G (1997) Mechanisms of biogenic amine neurotransporters. In: Reith M (ed) Neurotransmitter transporter: structure, function and regulation. Humana Press, Totowa, pp 73–100

    Google Scholar 

  • Scholze P, Norregaard L, Singer EA, Freissmuth M, Gether U, Sitte HH (2002) The role of zinc ions in reverse transport mediated by monoamine transporters. J Biol Chem 277:21505–21513

    Article  PubMed  CAS  Google Scholar 

  • Slomianka L (1992) Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat. Neuroscience 48:325–352

    Article  PubMed  CAS  Google Scholar 

  • Sonders MS, Amara SG (1996) Channels in transporters. Curr Opin Neurobiol 6:294–302

    Article  PubMed  CAS  Google Scholar 

  • Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci 17:960–974

    PubMed  CAS  Google Scholar 

  • Sonders MS, Quick M, Javitch JA (2005) How did the neurotransmitter cross the bilayer? A closer view. Curr Opin Neurobiol 15:296–304

    Article  PubMed  CAS  Google Scholar 

  • Swaminath G, Steenhuis J, Kobilka B, Lee TW (2002) Allosteric modulation of beta 2-adrenergic receptor by Zn2+. Mol Pharmacol 61:65–72

    Article  PubMed  CAS  Google Scholar 

  • Swaminath G, Lee TW, Kobilka B (2003) Identification of an allosteric binding site for Zn2+ on the beta 2 adrenergic receptor. J Biol Chem 278:352–356

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama N, Nagano T, Matsuki N, Ikegaya Y (2002) Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-D-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158:215–220

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg RJ, Arriza JL, Amara SG, Kavanaugh MP (1995) Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J Biol Chem 270:17668–17671

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg RJ, Mitrovic AD, Johnston GA (1998) Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions. Mol Pharmacol 54:189–196

    PubMed  CAS  Google Scholar 

  • Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26:187–196

    Article  PubMed  CAS  Google Scholar 

  • Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728

    Article  PubMed  CAS  Google Scholar 

  • Wenzel HJ, Cole TB, Born DE, Schwartzkroin PA, Palmiter RD (1997) Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci U S A 94:12676–12681

    Article  PubMed  CAS  Google Scholar 

  • Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na(+)/Cl(−)-dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nørgaard-Nielsen, K., Gether, U. (2006). Zn2+ Modulation of Neurotransmitter Transporters. In: Sitte, H.H., Freissmuth, M. (eds) Neurotransmitter Transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29784-7_1

Download citation

Publish with us

Policies and ethics