Skip to main content

The Use of Non-targeted Metabolomics in Plant Science

  • Chapter
Plant Metabolomics

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 57))

3 Conclusion

FT-ICR MS has many applications within plant sciences. The major advantage for utilizing FT-ICR MS technology is the ability to monitor global system changes in a non-targeted manner. It is the non-targeted approach that allows the visualization of changes of both known and unknown or unexpected metabolites, allowing the researcher to then focus or target their research to a specific metabolite or group of metabolites. The examples highlighted in this chapter have shown, with the use of FT-ICRMS in a non-targeted approach, discoveries that may not have been possible or as easy to make with other metabolomic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharoni A, Ric De Vos CH, Verhoeven HA, Malipaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics 6:217–234

    Article  PubMed  CAS  Google Scholar 

  • Busch KI (2002) A glossary of mass spectrometry. Mass Spectrometry 17(6S):29

    Google Scholar 

  • Cooper DC, Sorrells ME (1984) Selection for white kernel color in the progeny of red/white wheat crosses. Euphytica 33:227–232

    Article  Google Scholar 

  • Dewey RE, Wilson RF, Novitzky WP Goode JH (1994) The AAPT1 gene of soybean complements a cholinephosphotransferase-deficient mutant of yeast. Plant Cell 6:1495–1507

    Article  PubMed  CAS  Google Scholar 

  • Edwards D, Batley J (2004) Plant bioinformatics: from genome to phenome. Trends Biotechnol 22:232–237

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: aquiring and understanding global metabolite data. Trend Biotechnol 22:245–252

    Article  CAS  Google Scholar 

  • Gray GR, Heath D (2005) A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiol Plant (accepted)

    Google Scholar 

  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14:1437–1440

    Article  PubMed  CAS  Google Scholar 

  • Haughn GW, Smith J, Mazur B, Somerville C (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211:266–271

    Article  CAS  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10210

    Article  PubMed  CAS  Google Scholar 

  • Hodek P, Trefil P, Stiborová M (2002) Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact 139:1–21

    Article  PubMed  CAS  Google Scholar 

  • Iwashina T (2000) The structure and distribution of flavonoids in plants. J Plant Res 113:287–299

    Article  CAS  Google Scholar 

  • Lamkin WM, Miller BS (1980) Note on the uses of sodium hydroxide to distinguish red wheat from white common, club and durum cultivars. Cereal Chem 57:293–294

    Google Scholar 

  • Lenoard JM, Slabaugh MB, Knapp SJ (1997) Cuphea wrightii thioesterases have unexpected boad specificities on saturated fatty acids. Plant Mol Biol 34:669–679

    Article  Google Scholar 

  • McHughen A, Rowland GG, Holm FA, Bhatty RS, Kenaschuk EO (1997) CDC Triffid transgenic flax. Can J Plant Sci 77:641–643

    Google Scholar 

  • Murch SJ, Rupasinghe HP, Goodenowe DB, Saxena PK (2004) A metabolomic analysis of medicinal diversity in Huang-qin (Scutellaria baicalensis Georgi) genotypes: discovery of novel compounds. Plant Cell Rep 23:419–425

    Article  PubMed  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast geneome. Trends Biotechnol 16:373–378

    Article  PubMed  CAS  Google Scholar 

  • Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Rowland GG (1991) An EMS-induced low-linolenic-acid mutant in McGregor flax (Linum usitatissimum). Can J Plant Sci 71:393–396

    CAS  Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Strand A, Hurry V, Gustafsson P, Gardestrom P (1997) Development of Arabidopsis thaliana leaves at low temperature releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J 12:605–614

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301:298–307

    Article  PubMed  CAS  Google Scholar 

  • Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180:5109–5116

    PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daskalchuk, T., Ahiahonu, P., Heath, D., Yamazaki, Y. (2006). The Use of Non-targeted Metabolomics in Plant Science. In: Saito, K., Dixon, R.A., Willmitzer, L. (eds) Plant Metabolomics. Biotechnology in Agriculture and Forestry, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29782-0_22

Download citation

Publish with us

Policies and ethics