Skip to main content

Feedback Regulation of the Heat Shock Response

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 172))

Abstract

The heat shock response is triggered primarily by nonnative proteins accumulating in a stressed cell and results in increased expression of heat shock proteins (Hsps), i.e., of chaperones capable of participating in the refolding or elimination of nonnative proteins. Best known is the transcriptional part of this response that is mediated predominantly by heat shock factor 1 (HSF1). HSF1 activity is regulated at different levels by Hsps and co-chaperones and ismodulated further by a number ofmechanisms involving other stress regulated aspects of cell metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abravaya K, Philips B, Morimoto RI (1991) Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev 5:2117–2127

    PubMed  CAS  Google Scholar 

  • Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) Hsp90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960

    PubMed  CAS  Google Scholar 

  • Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    PubMed  CAS  Google Scholar 

  • Baler R, Welch WJ, Voellmy R (1992) Heat shock gene regulationby nascent polypeptides and denatured proteins: Hsp70 as a potential autoregulatory factor. J Cell Biol 117:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Baler R, Dahl G, Voellmy R (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor Hsf1. Mol Cell Biol 13:2486–2496

    PubMed  CAS  Google Scholar 

  • Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of Chip, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    PubMed  CAS  Google Scholar 

  • Bharadwaj S, Ali A, Ovsenek N (1999) Multiple components of the Hsp90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol Cell Biol 19:8033–8041

    PubMed  CAS  Google Scholar 

  • Boellmann F, Guettouche T, Guo Y, Fenna M, Mnayer L, Voellmy R (2004) DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity. Proc Natl Acad Sci U S A 101:4100–4105

    Article  PubMed  CAS  Google Scholar 

  • Bruce JL, Price BD, Coleman CN, Calderwood SK (1993) Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res 53:12–15

    PubMed  CAS  Google Scholar 

  • Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272:9086–9092

    PubMed  CAS  Google Scholar 

  • Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D (1998) Activation of a poptosis signal regulating kinase 1 (ASK 1) by the adapter protein Daxx. Science 281:1860–1863

    Article  PubMed  CAS  Google Scholar 

  • Chu B, Soncin F, Price BD, Stevenson, MA, Calderwood SK (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271:30847–30857

    PubMed  CAS  Google Scholar 

  • Chu B, Zhong R, Soncin F, Stevenson MA, Calderwood SK (1998) Transcriptional activity of heat shock factor 1 at 37 degrees C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta. J Biol Chem 273:18640–18646

    PubMed  CAS  Google Scholar 

  • Clos J, Rabindran S, Wisniewski J, Wu C (1993) Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature 364:252–255

    Article  PubMed  CAS  Google Scholar 

  • Conde AG, Lau SS, Dillmann WH, Mestril R (1997) Induction of heat shock proteins by tyrosine kinase inhibitors in rat cardiomyocytes and myogenic cells confers protection against simulated ischemia. J Mol Cell Cardiol 29: 1927–1938

    Article  PubMed  CAS  Google Scholar 

  • Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hoehfeld J, Patterson C (2001) Regulation of heat shock protein-mediated protein triage decisions by the co-chaperone Chip. Nat Cell Biol 3:93–96

    PubMed  CAS  Google Scholar 

  • Cotto JJ, Kline M, Morimoto RI (1996) Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem 271:3355–3358

    PubMed  CAS  Google Scholar 

  • Cotto J, Fox S, Morimoto R (1997) HSF1 granules: a novel stress-induced nuclear component of human cells, J Cell Sci 110:2925–2934

    PubMed  CAS  Google Scholar 

  • Dai R, Frejtag W, He B, Zhang Y, Mivechi NF (2000) c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. J Biol Chem 275:18210–18218

    PubMed  CAS  Google Scholar 

  • Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, Cyr D, Patterson C (2003) Chip activates Hsf1 and confers protection against apoptosis and cellular stress. EMBO J 22:5446–5458

    Article  PubMed  CAS  Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist S (1982). The heat shock response is self-regulated at both the transcriptional and post-transcriptional levels. Cell 31:593–603

    Article  PubMed  CAS  Google Scholar 

  • Duina AA, Kalton HM, Gaber RF (1998) Requirement for Hsp90 and a Cyp40-type cyclophilin in negative regulation of the heat shock response. J Biol Chem 273:18974–18978

    PubMed  CAS  Google Scholar 

  • Ecsedy JA, Michaelson JS, Leder P (2003) Homeodomain-interacting protein kinase 1 modulates Daxx localization, phosphorylation, and transcriptional activity. Mol Cell Biol 23:950–960

    Article  PubMed  CAS  Google Scholar 

  • Erdos G, Lee YI (1994) Effect of staurosporine on the transcription of hsp70 heat shock gene in HT-29 cells. Biochem Biophys Res Commun 202:476–483

    Article  PubMed  CAS  Google Scholar 

  • Esser C, Alberti S, Hoehfeld J (2004) Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim Biophys Acta 1695:171–188

    PubMed  CAS  Google Scholar 

  • Everett RD, Lomonte P, Sternsdorf T, van Driel R, Orr A (1999) Cell cycle regulation of PML modification and ND10 composition. J Cell Sci 112:4581–4588

    PubMed  CAS  Google Scholar 

  • Fisher EA, Zhou M, Mitchell DM, Wu X, Omura S, Wang H, Goldberg AL, Ginsberg HN (1997) The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70. J Biol Chem 272:20427–20434

    PubMed  CAS  Google Scholar 

  • Freeman ML, Borrelli MJ, Syed K, Senisterra G, Stafford DM, Lepock JR (1995) Characterization of a signal generated by oxidation of protein thiols activates the heat shock transcription factor. J Cell Physiol 164: 356–366

    Article  PubMed  CAS  Google Scholar 

  • Fritsch M, Wu C (1999) Phosphorylation of Drosophila heat shock transcription factor. Cell Stress Chaperones 4:102–117

    Article  PubMed  CAS  Google Scholar 

  • Giardina C, Lis JT (1995) Dynamic protein-DNAarchitecture of a yeast heat shock promoter. Mol Cell Biol 15: 2737–2744

    PubMed  CAS  Google Scholar 

  • Green M, Schuetz TJ, Sullivan EK, Kingston RE (1995) A heat-shock-responsive domain of human Hsf1 that regulates transcription activation domain function. Mol Cell Biol 15:3354–3362

    PubMed  CAS  Google Scholar 

  • Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO (1997) The amino-terminal domain of heat shock protein 90 (HSP90) that binds geldanamycin is an ATP/ADP switch domain that regulates HSP90 conformation. J Biol Chem 272:23843–23850

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Goldberg AL (1985) Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell 41:587–595

    Article  PubMed  CAS  Google Scholar 

  • Goodson ML, Sarge KD (1995) Heat-inducible DNA binding of purified heat shock transcription factor 1. J Biol Chem 270:2447–2450

    PubMed  CAS  Google Scholar 

  • Guettouche T, Boellmann F, Lane WS, Voellmy R (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochemistry 6:4

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Guettouche T, Fenna M, Boellmann F, Pratt WB, Toft DO, Smith DF, Voellmy R (2001) Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J Biol Chem 276:45791–45799

    PubMed  CAS  Google Scholar 

  • Gusarova V, Caplan AJ, Brodsky JL, Fisher EA (2001) Apolipoprotein B degradation is promoter by the molecular chaperones hsp90 and hsp70. J Biol Chem 276:24891–24900

    Article  PubMed  CAS  Google Scholar 

  • He B, Meng YH, Mivechi NF (1998) Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol Cell Biol 18:6624–6633

    PubMed  CAS  Google Scholar 

  • He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J, Brown SA, Kingston RE, Calderwood SK (2003) Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278: 35465–35475

    PubMed  CAS  Google Scholar 

  • Hedge RS, Zuo J, Voellmy R, Welch WJ (1995) Short circuiting stress protein expression via a tyrosine kinase inhibitor, herbimycin A. J Cell Physiol 165:186–200

    Google Scholar 

  • Henics T, Nagy E, Oh HJ, Csermely P, von Gabai A, Subjeck JR (1999) Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. J Biol Chem 274:17318–17324

    Article  PubMed  CAS  Google Scholar 

  • Hietakangas V, Ahlskog JK, Jakobsson AM, Hellesuo M, Sahlberg NM, Holmberg CI, Mikhailov A, Palvimo JJ, Pirkkala L, Sistonen L (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23:2953–2968

    PubMed  CAS  Google Scholar 

  • Hightower LE (1980) Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol 102:407–427

    Article  PubMed  CAS  Google Scholar 

  • Hoj A, Jacobsen BK (1994) A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J 13:2617–2624

    PubMed  CAS  Google Scholar 

  • Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20:3800–3810

    Article  PubMed  CAS  Google Scholar 

  • Inouye S, Katsuki K, Izu H, Fujimoto M, Sugahara K, Yamada S-I, Shinkai Y, Oka Y, Katoh Y, Nakai A (2003) Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol Cell Biol 23:5882–5895

    Article  PubMed  CAS  Google Scholar 

  • Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ETH, Strauss III JF, Maul GG (1999) PML is critical for ND10 formation and recruits the PML interacting protein DAXX to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–233

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Morimoto RI, Robert-Nicoud M, Vourc’h C (1997) HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J Cell Sci 110:2935–2941

    PubMed  CAS  Google Scholar 

  • Jolly C, Konecny L, Grady DL, Kurskova YA, Cotto JJ, Morimoto RI, Vourc’h C (2002) In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J Cell Biol 156: 775–781

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc’h C (2004) Stressinduced transcription of satellite III repeats. J Cell Biol 164:25–33

    Article  PubMed  CAS  Google Scholar 

  • Jurivich DA, Sistonen L, Kroes RA, Morimoto RI (1992) Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245

    PubMed  CAS  Google Scholar 

  • Jurivich DA, Pachetti C, Qiu L, Welk JF (1995) Salicylate triggers heat shock factor differently than heat. J Biol Chem 270:24489–24495

    PubMed  CAS  Google Scholar 

  • Kelley PM, Schlesinger MJ (1978) The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell 15:1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Nueda A, Meng YH, Dynan WS, Mivechi NF (1997) Analysis of the phosphorylation of human heat shock transcription factor-1 byMAP kinase family members. J Cell Biochem 67:43–54

    PubMed  CAS  Google Scholar 

  • Kim S-A, Yoon J-H, Lee S-H, Ahn S-G (2005) Polo-like kinase 1 phosphorylates HSF1 and mediates its nuclear translocation during heat stress. J Biol Chem 280:12653–12657; e-pub Jan 20

    PubMed  CAS  Google Scholar 

  • Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17:2107–2115

    PubMed  CAS  Google Scholar 

  • Knauf U, Newton EM, Kyriakis J, Kingston RE (1996) Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10:2782–2793

    PubMed  CAS  Google Scholar 

  • Knowlton AA, Sun L (2001) Heat shock factor-1, steroid hormones, and the regulation of heat-shock protein expression in the heart. Am J Physiol Heart Circ Physiol 280:H455–H464

    PubMed  CAS  Google Scholar 

  • Larson JS, Schuetz TJ, Kingston RE (1995) In vitro activation of purified human heat shock factor by heat. Biochemistry 34:1902–1911

    PubMed  CAS  Google Scholar 

  • Lee DH, Goldberg AL (1998) Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol Cell Biol 18:30–38

    PubMed  CAS  Google Scholar 

  • Lepock JR (2005) Measurement of protein stability and protein denaturation in cells using differential scanning microcalorimetry. Methods 35:117–125

    Article  PubMed  CAS  Google Scholar 

  • Lepock JR, Frey HE, Ritchie KP (1993) Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. J Cell Biol 122:1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1980) Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev Biol 77:463–479

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Lightfoot R, Stevens JL (1996) Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem 271:4805–4812

    PubMed  CAS  Google Scholar 

  • Lohmann C, Eggers-Schumacher G, Wunderlich M, Schoeffl F (2004) Two different heat shock transcription factors regulate immediate early expression of stress genes in Aradopsis. Mol Genet Genomics 271:11–21

    PubMed  CAS  Google Scholar 

  • Marchler G, Wu C (2001) Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DroJ1. EMBO J 20:499–509

    Article  PubMed  CAS  Google Scholar 

  • Maul GG, Yu E, Ishov AM, Epstein AL (1995) Nuclear domain 10 (ND10) associated proteins are also present in nuclear bodies and redistribute to hundreds of nuclear sites after stress. J Cell Biochem 59:498–513

    Article  PubMed  CAS  Google Scholar 

  • McDonough H, Patterson C (2003) Chip: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8:303–308

    Article  PubMed  CAS  Google Scholar 

  • McDuffee AT, Senisterra G, Huntley S, Lepock JR, Sekhar KR, Meredith MJ, Borrelli MJ, Morrow JD, Freeman ML (1997) Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response. J Cell Physiol 171:143–151

    Article  PubMed  CAS  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruptionof heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  PubMed  CAS  Google Scholar 

  • Metz A, Soret J, Vourc’h C, Tazi J, Jolly C (2004) A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci 177:4551–4558

    Google Scholar 

  • Moseley PL, Wallen ES, McCafferty JD, Flanagan S, Kern JA (1993) Heat stress regulates the human 70-kDa heat-shock gene through the 3′-untranslated region. Am J Physiol 264:L533–L537

    PubMed  CAS  Google Scholar 

  • Muller S, Matunis MJ, Dejean A (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17:61–70

    PubMed  CAS  Google Scholar 

  • Murakami Y, Uehara Y, Yamamoto C, Fukazawa H, Mizuno S (1991) Induction of HSP72/73 by herbimycin A, an inhibitor of transformation by tyrosine kinase oncogenes. Exp Cell Res 195:338–344

    Article  PubMed  CAS  Google Scholar 

  • Nadeau K, Das A, Walsh CT (1993) Hsp90 cochaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 268:1479–1487

    PubMed  CAS  Google Scholar 

  • Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF (1996) A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, FES tyrosine kinase, heat shock transcription factor 1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1:237–250

    Article  PubMed  CAS  Google Scholar 

  • Nefkens I, Negorev DG, Ishov AM, Michaelson JS, Yeh ETH, Tanguay RM, Mueller WEG, Maul GG (2003) Heat shock and Cd2+ exposure regulate PML and DAXX release from ND10 by independent mechanisms that modify the induction of heat-shock proteins 70 and 25 differently. J Cell Sci 116:513–524

    Article  PubMed  CAS  Google Scholar 

  • Nollen EA, Brunsting JF, Roelofsen H, Weber LA, Kampinga HH (1999) In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol Cell Biol 19:2069–2079

    PubMed  CAS  Google Scholar 

  • Petersen RB, Lindquist S (1989) Regulation of Hsp70 synthesis by messenger RNA degradation. Cell Regulation 1:135–149

    PubMed  CAS  Google Scholar 

  • Pirkkala L, Alastalo T, Zuo X, Benjamin IJ (2000) Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 20:2670–2675

    Article  PubMed  CAS  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360

    Article  PubMed  CAS  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the HSP90 molecular chaperone. Cell 90:65–75

    Article  PubMed  CAS  Google Scholar 

  • Rabindran SK, Giorgi G, Clos J, Wu C (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci U S A 88:6906–6910

    PubMed  CAS  Google Scholar 

  • Rieger TR, Morimoto RI, Hatzimanikatis V (2005) Mathematical modeling of the eukaryotic heat shock response: dynamics of the hsp70 promoter. Biophys J 88:1646–1658

    Article  PubMed  CAS  Google Scholar 

  • Rizzi N, Denegri M, Chiodi L, Corioni M, Valgardsdottir R, Cobianchi F, Riva S, Biamonti G (2004) Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Mol Biol Cell 15:543–551

    PubMed  CAS  Google Scholar 

  • Rochat-Steiner V, Becker K, Micheau O, Schneider P, Burns, Tschopp J (2000) FIST/HIPK3: a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation. J Exp Med 192:1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear translocation and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    PubMed  CAS  Google Scholar 

  • Senisterra GA, Huntley SA, Escaravage M, Sekhar KR, Freeman ML, Borrelli M, Lepock JR (1997) Destabilization of the Ca2+-ATPase of sarcoplasmic reticulum by thiol-specific, heat shock inducers results in thermal denaturation at 37 degrees C. Biochemistry 36:11002–11011

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Kroeger PE, Morimoto RI (1995) The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive. Mol Cell Biol 15:4309–4318

    PubMed  CAS  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998). Molecular chaperones as Hsf1-specific transcriptional repressors. Genes Dev 12:654–666

    PubMed  CAS  Google Scholar 

  • Tanabe M, Kawazoe Y, Takeda S, Morimoto RI, Nagata K, Nakai A (1998) Disruption of the hsf3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 17:1750–1758

    Article  PubMed  CAS  Google Scholar 

  • Theodorakis NG, Morimoto RI (1987) Posttranscriptional regulation of Hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol Cell Biol 7:4357–4368

    PubMed  CAS  Google Scholar 

  • Torii S, Egan DA, Evans RA, Reed JC (1999) Human DAXX regulates FAS-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J 18:6037–6049

    Article  PubMed  CAS  Google Scholar 

  • Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122–133

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Grammatikakis N, Sikanou A, Calderwood SK (2003) Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3e binding, and cytoplasmic sequestration of heat shock factor 1. Mol Cell Biol 23:6013–6026

    PubMed  CAS  Google Scholar 

  • Wang X, Grammatikakis N, Sikanou A, Stevenson MA, Calderwood SK (2004) Interaction between extracellular signal-regulated protein kinase 1, 14-3-3e, and heat shock factor 1 during stress. J Biol Chem 279: 49460–49469

    PubMed  CAS  Google Scholar 

  • Westwood JT, Clos J, Wu C (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353:822–827

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-PP60V-SRC heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci. U S A 91:8324–8328

    PubMed  CAS  Google Scholar 

  • Xavier IJ, Mercier PA, McLoughlin CM, Ali A, Woodgett N JR, Ovsenek, N (2000) Glycogen synthase kinase 3beta negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1. J Biol Chem 275: 29147–29152

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Voellmy R (1997) Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J Biol Chem 272:4094–4102

    PubMed  CAS  Google Scholar 

  • Xia W, Guo Y, Vilaboa N, Zuo J, Voellmy, R (1998) Transcriptional activation of heat shock factor HSF1 probed by phosphopeptide analysis of factor 32P-labeled in vivo. J Biol Chem 273:8749–8755

    PubMed  CAS  Google Scholar 

  • Xia W, Vilaboa N, Martin J, Mestril R, Guo Y, Voellmy R (1999) Modulation of tolerance by mutant heat shock transcription factors. Cell Stress Chaperones 4:8–18

    Article  PubMed  CAS  Google Scholar 

  • Xing H, Mayhew CN, Cullen KE, Park-Sarge O-K, Sarge KD (2004) HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin. J Biol Chem 279:10551–10555

    PubMed  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45:185–193

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Nijbroek G, Sullivan ML, McCracken AA, Watkins SC, Michaelis S, Brodsky JL (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12:1303–1314

    PubMed  CAS  Google Scholar 

  • Zhang Y, Huang L, Zhang J, Moskophidis D, Mivechi NF (2002) Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible HSP molecular chaperones. J Cell Biochem 86:376–393

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Hashiguchi K, Kondoh W, Du W, Hata J, Yamada T (2002) Exogenous expression of heat shock protein 90 kDa retards the cell cycle and impairs the heat shock response. Exp Cell Res 275:200–214

    Article  PubMed  CAS  Google Scholar 

  • Zhong M, Orosz A, Wu C (1998) Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell 2:101–108

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Salomoni P, Ronchetti S, Guo A, Ruggero D, Pandolfi PP (2000) Promyelocytic leukemia protein (PML) and DAXX participate in a novel nuclear pathway for apoptosis. J Exp Med 191:631–640

    PubMed  CAS  Google Scholar 

  • Zimarino V, Wu C (1987) Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature 327:727–730

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Salminen WF, Roberts SM, Voellmy R (1998a) Correlation between glutathione oxidation and trimerization of heat shock factor 1, an early step in stress induction of the Hsp response. Cell Stress Chaperones 3: 130–141

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998b) Repression of heat shock transcription factor Hsf1 activation by Hsp90 (Hsp90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Baler R, Dahl G, Voellmy R (1994) Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol Cell Biol 14:7557–7568

    PubMed  CAS  Google Scholar 

  • Zuo J, Rungger D, Voellmy R (1995) Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 15:4319–4330

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voellmy, R. (2006). Feedback Regulation of the Heat Shock Response. In: Starke, K., Gaestel, M. (eds) Molecular Chaperones in Health and Disease. Handbook of Experimental Pharmacology, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29717-0_2

Download citation

Publish with us

Policies and ethics