Skip to main content

AKAPs as Antiarrhythmic Targets?

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 171))

Abstract

Phosphorylation of ion channels plays a critical role in the modulation and amplification of biophysical signals. Kinases and phosphatases have broad substrate recognition sequences. Therefore, the targeting of kinases and phosphatases to specific sites enhances the regulation of diverse signaling events. Ion channel macromolecular complexes can be formed by the association of A-kinase anchoring proteins(AKAPs) or other adaptor proteins directly with the channel. The discovery that leucine/isoleucine zippers play an important role in the recruitment of phosphorylation-modulatory proteins to certain ion channels has permitted the elucidation of specific ion channel macromolecular complexes. Disruption of signaling complexes by genetic defects can lead to abnormal physiological function. This chapter will focus on evidence supporting the concept that ion channel macromolecular complex formation plays an important role in regulating channel function in normal and diseased states. Moreover, we demonstrate that abnormal complex formation may directly lead to abnormal channel regulation by cellular signaling pathways, potentially leading to arrhythmogenesis and cardiac dysfunction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen P, Ouimet C, Greengard P (1997) Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci USA 94:9956–9961

    Article  CAS  PubMed  Google Scholar 

  • Arkin IT, Adams PD, MacKenzie KR, Lemmon MA, Brunger AT, Engelman DM (1994) Structural organization of the pentameric transmembrane alpha-helices of phospholamban, a cardiac ion channel. EMBO J 13:4757–4764

    CAS  PubMed  Google Scholar 

  • Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80

    Article  CAS  PubMed  Google Scholar 

  • Bianchi L, Shen Z, Dennis AT, Priori SG, Napolitano C, Ronchetti E, Bryskin R, Schwartz PJ, Brown AM (1999) Cellular dysfunction of LQT5-minK mutants: abnormalities of IKs, IKr and trafficking in long QT syndrome. Hum Mol Genet 8:1499–1507

    Article  CAS  PubMed  Google Scholar 

  • Brillantes A-MB, Ondrias K, Jayaraman T, Scott A, Kobrinsky E, Ehrlich BE, Marks A (1994) FKBP12 optimizes function of the cloned expressed calcium release channel (ryanodine receptor). Biophys J 66:A19

    Google Scholar 

  • Carr DW, Stofko-Hahn RE, Fraser ID, Bishop SM, Acott TS, Brennan RG, Scott JD (1991) Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 266:14188–14192

    CAS  PubMed  Google Scholar 

  • Chisholm AA, Cohen P (1988) The myosin-bound form of protein phosphatase 1 (PP-1M) is the enzyme that dephosphorylates native myosin in skeletal and cardiac muscles. Biochim Biophys Acta 971:163–169

    Article  CAS  PubMed  Google Scholar 

  • Clancy CE, Kurokawa J, Tateyama M, Wehrens XH, Kass RS (2003) K+ channel structure-activity relationships and mechanisms of drug-induced QT prolongation. Annu Rev Pharmacol Toxicol 43:441–461

    Article  CAS  PubMed  Google Scholar 

  • Colledge M, Dean RA, Scott GK, Langeberg LK, Huganir RL, Scott JD (2000) Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 27:107–119

    Article  CAS  PubMed  Google Scholar 

  • Corbin JD, Sugden PH, Lincoln TM, Keely SL (1977) Compartmentalization of adenosine 3’:5’-monophosphate and adenosine 3’:5’-monophosphate-dependent protein kinase in heart tissue. J Biol Chem 252:3854–3861

    CAS  PubMed  Google Scholar 

  • Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20:1921–1930

    Article  CAS  PubMed  Google Scholar 

  • Fabiato A, Fabiato F (1979) Calcium and cardiac excitation-contraction coupling. Annu Rev Physiol 41:473–484

    Article  CAS  PubMed  Google Scholar 

  • Fan G, Shumay E, Wang HH, Malbon CC (2001) The scaffold protein gravin (AKAP250) binds the β2-adrenergic receptor via the receptor cytoplasmic R329 to L413 domain and provides a mobile scaffold during desensitization. J Biol Chem 276:24005–24014

    Article  CAS  PubMed  Google Scholar 

  • Feliciello A, Gottesman ME, Avvedimento EV (2001) The biological functions of A-kinase anchor proteins. J Mol Biol 308:99–114

    Article  CAS  PubMed  Google Scholar 

  • Galvan DL, Borrego-Diaz E, Perez PJ, Mignery GA (1999) Subunit oligomerization, and topology of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 274:29483–29492

    Article  CAS  PubMed  Google Scholar 

  • Herzig S, Neumann J (2000)Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 80:173–210

    CAS  PubMed  Google Scholar 

  • Hoshi N, Zhang JS, Omaki M, Takeuchi T, Yokoyama S, Wanaverbecq N, Langeberg LK, Yoneda Y, Scott JD, Brown DA, Higashida H (2003) AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci 6:564–571

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Wang S, Qin D, Boutjdir M, El-Sherif N (1999) Diminished basal phosphorylation level of phospholamban in the postinfarction remodeled rat ventricle: role of beta-adrenergic pathway, G(i) protein, phosphodiesterase, and phosphatases. Circ Res 85:848–855

    CAS  PubMed  Google Scholar 

  • Hulme JT, Ahn M, Hauschka SD, Scheuer T, Catterall WA (2002) A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. J Biol Chem 277:4079–4087

    Article  CAS  PubMed  Google Scholar 

  • Hulme JT, Lin TW, Westenbroek RE, Scheuer T, Catterall WA (2003) Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci U S A 100:13093–13098

    Article  CAS  PubMed  Google Scholar 

  • Kaftan E, Marks AR, Ehrlich BE (1996) Effects of rapamycin on ryanodine receptor/Ca2+-release channels from cardiac muscle. Circ Res 78:990–997

    CAS  PubMed  Google Scholar 

  • Kammerer S, Burns-Hamuro LL, Ma Y, Hamon SC, Canaves JM, Shi MM, Nelson MR, Sing CF, Cantor CR, Taylor SS, Braun A (2003) Amino acid variant in the kinase binding domain of dual-specific A kinase-anchoring protein 2: a disease susceptibility polymorphism Proc Natl Acad Sci U S A 100:4066–4071

    Article  CAS  PubMed  Google Scholar 

  • Kass RS, Wiegers SE (1982) The ionic basis of concentration-related effects of noradrenaline on the action potential of calf cardiac purkinje fibres. J Physiol 322:541–558

    CAS  PubMed  Google Scholar 

  • Keating MT, Sanguinetti MC (2001)Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104:569–580

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa J, Abriel H, Kass RS (2001)Molecular basis of the delayed rectifier current I(ks)in heart. J Mol Cell Cardiol 33:873–882

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa J, Chen L, Kass RS (2003) Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Proc Natl Acad Sci U S A 100:2122–2127

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa J, Motoike HK, Rao J, Kass RS (2004) Regulatory action of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci U S A 101:16374–16378

    Article  CAS  PubMed  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764

    CAS  PubMed  Google Scholar 

  • Lin JW, Wyszynski M, Madhavan R, Sealock R, Kim JU, Sheng M (1998) Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J Neurosci 18:2017–2027

    CAS  PubMed  Google Scholar 

  • Lupas A (1996) Coiled coils: new structures and new functions. TIBS 21:375–382

    CAS  PubMed  Google Scholar 

  • Marx SO, Ondrias K, Marks AR (1998) Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 281:818–821

    Article  CAS  PubMed  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376

    Article  CAS  PubMed  Google Scholar 

  • Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR (2001a) Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 88:1151–1158

    CAS  PubMed  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, Rosemblit N, Marks AR (2001b) Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J Cell Biol 153:699–708

    Article  CAS  PubMed  Google Scholar 

  • Marx SO, Kurokawa J, Reiken S, Motoike H, D’Armiento J, Marks AR, Kass RS(2002)Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–499

    Article  CAS  PubMed  Google Scholar 

  • McAvoy T, Allen PB, Obaishi H, Nakanishi H, Takai Y, Greengard P, Nairn AC, Hemmings HC Jr (1999) Regulation of neurabin I interaction with protein phosphatase 1 by phosphorylation. Biochemistry 38:12943–12949

    Article  CAS  PubMed  Google Scholar 

  • McCormack K, Tanouye MA, Iverson LE, Lin JW, Ramaswami M, McCormack T, Campanelli JT, Mathew MK, Rudy B (1991) A role for hydrophobic residues in the voltage-dependent gating of Shaker K+ channels. Proc Natl Acad Sci U S A 88:2931–2935

    CAS  PubMed  Google Scholar 

  • Michel JJ, Scott JD (2002)AKAP mediated signal transduction.Annu Rev Pharmacol Toxicol 42:235–257

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Gupta RC, Tiwari N, Sharov VG, Sabbah HN (2002) Molecular mechanisms of reduced sarcoplasmic reticulum Ca(2+) uptake in human failing left ventricular myocardium. J Heart Lung Transplant 21:366–373

    Article  PubMed  Google Scholar 

  • Nabauer M, Callewaert G, Cleemann L, Morad M (1989) Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244:800–803

    CAS  PubMed  Google Scholar 

  • Orellana SA, Quinones AM, Mandapat ML (2003) Ezrin distribution is abnormal in principal cells from a murine model of autosomal recessive polycystic kidney disease. Pediatr Res 54:406–412

    Article  CAS  PubMed  Google Scholar 

  • Paavonen KJ, Swan H, Piippo K, Hokkanen L, Laitinen P, Viitasalo M, Toivonen L, Kontula K (2001) Response of the QT interval to mental and physical stress in types LQT1 and LQT2 of the long QT syndrome. Heart 86:39–44

    Article  CAS  PubMed  Google Scholar 

  • Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins Science 278:2075–2080

    Article  CAS  PubMed  Google Scholar 

  • Piippo K, Swan H, Pasternack M, Chapman H, Paavonen K, Viitasalo M, Toivonen L, Kontula K (2001) A founder mutation of the potassium channel KCNQ1 in long QT syndrome: implications for estimation of disease prevalence and molecular diagnostics. J Am Coll Cardiol 37:562–568

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Barhanin J, Hauer RN, Haverkamp W, Jongsma HJ, Kleber AG, McKenna WJ, Roden DM, Rudy Y, Schwartz K, Schwartz PJ, Towbin JA, Wilde AM (1999) Genetic and molecular basis of cardiac arrhythmias: impact on clinical management parts I and II Circulation 99:518–528

    CAS  PubMed  Google Scholar 

  • Reiken S, Gaburjakova M, Gaburjakova J, He Kl KL, Prieto A, Becker E, Yi Gh GH, Wang J, Burkhoff D, Marks AR (2001) β-Adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation 104:2843–2848

    CAS  PubMed  Google Scholar 

  • Reiken S, Gaburjakova M, Guatimosim S, Gomez AM, D’Armiento J, Burkhoff D, Wang J, Vassort G, Lederer WJ, Marks AR (2003) Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J Biol Chem 278:444–453

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Erlichman J, Rubin CS (1984) Identification of a calmodulin-binding protein that co-purifies with the regulatory subunit of brain protein kinase II. J Biol Chem 259:9840–9846

    CAS  PubMed  Google Scholar 

  • Schulze DH, Muqhal M, Lederer WJ, Ruknudin AM (2003) Sodium/calcium exchanger (NCX1) macromolecular complex. J Biol Chem 278:28849–28855

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, Denjoy I, Guicheney P, Breithardt G, Keating MT, Towbin JA, Beggs AH, Brink P, Wilde AA, Toivonen L, Zareba W, Robinson JL, Timothy KW, Corfield V, Wattanasirichaigoon D, Corbett C, Haverkamp W, Schulze-Bahr E, Lehmann MH, Schwartz K, Coumel P, Bloise R (2001) Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103:89–95

    CAS  PubMed  Google Scholar 

  • Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E (1999) Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31:479–491

    Article  PubMed  Google Scholar 

  • Scott JD (1991) Cyclic nucleotide-dependent protein kinases. Pharmacol Ther 50:123–145

    Article  CAS  PubMed  Google Scholar 

  • Scott JD (1997) Dissection of protein kinase and phosphatase targeting interactions. Soc Gen Physiol Ser 52:227–239

    CAS  PubMed  Google Scholar 

  • Simmerman HK, Kobayashi YM, Autry JM, Jones LR (1996) A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J Biol Chem 271:5941–5946

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, Moss AJ, Schwartz PJ, Towbin JA, Vincent GM, Keating MT (2000) Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102:1178–1185

    CAS  PubMed  Google Scholar 

  • Stralfors P, Hiraga A, Cohen P (1985) The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur J Biochem 149:295–303

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Hug MJ, Bradbury NA, Frizzell RA (2000) Protein kinase A associates with cystic fibrosis transmembrane conductance regulator via an interaction with ezrin. J BiolChem 275:14360–14366

    CAS  Google Scholar 

  • Tao J, Wang H, Malbon CC (2003) Protein kinase A regulates AKAP250 (gravin) scaffold binding to the β2-adrenergic receptor. EMBO J 22:6419–6429

    Article  CAS  PubMed  Google Scholar 

  • Theurkauf WE, Vallee RB (1982) Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J Biol Chem 257:3284–3290

    CAS  PubMed  Google Scholar 

  • Timerman AP, Onoue H, Xin HB, Barg S, Copello J, Wiederrecht G, Fleischer S (1996) Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J Biol Chem 271:20385–20391

    Article  CAS  PubMed  Google Scholar 

  • Tu H, Tang TS, Wang Z, Bezprozvanny I (2004) Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. J Biol Chem 279:19375–19382

    Article  CAS  PubMed  Google Scholar 

  • Wehrens XH, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, Sun J, Guatimosim S, Song LS, Rosemblit N, D’Armiento JM, Napolitano C, Memmi M, Priori SG, Lederer WJ, Marks AR (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829–840

    Article  CAS  PubMed  Google Scholar 

  • Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D, Coromilas J, Landry DW, Marks AR (2004) Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304:292–296

    Article  CAS  PubMed  Google Scholar 

  • Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, Sheng M, Scott JD (1999) Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285:93–96

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Drazba JA, Ferguson DG, Bond M (1998) A-kinase anchoring protein 100 (AKAP100) is localized in multiple subcellular compartments in the adult rat heart. J Cell Biol 142:511–522

    Article  CAS  PubMed  Google Scholar 

  • Zaccolo M, Magalhaes P, Pozzan T (2002) Compartmentalisation of cAMP and Ca(2+) signals. Curr Opin Cell Biol 14:160–166

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Laurita KR, Rosenbaum DS, Rudy Y (1995) Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res 77:140–152

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marx, S., Kurokawa, J. (2006). AKAPs as Antiarrhythmic Targets?. In: Basis and Treatment of Cardiac Arrhythmias. Handbook of Experimental Pharmacology, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29715-4_8

Download citation

Publish with us

Policies and ethics