Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 305))

Abstract

Immunological self-tolerance is maintained through diverse mechanisms, including deletion of autoreactive immune cells following confrontation with autoantigen in the thymus or in the periphery and active suppression by regulatory cells. A third way to prevent autoimmunity is by hiding self tissues behind a tissue barrier impermeable for circulating immune cells. The latter mechanism has been held responsible for self-tolerance within the nervous tissue. Indeed, the nervous tissues enjoy a conditionally privileged immune status: they are normally unreachable for self-reactive T and B cells, they lack lymphatic drainage, and they are deficient in local antigen-presenting cells. Yet the immune system is by no means fully ignorant of the nervous structures. An ever-growing number of brain specific autoantigens is expressed within the thymus, which ensures an early confrontation with the unfolding T cell repertoire, and there is evidence that B cells also contact CNS-like structures outside of the brain. Then pathological processes such as neurodegeneration commonly lift the brain’s immune privilege, shifting the local milieus from immune-hostile to immune-friendly. Finally, brain-reactive T cells, which abound in the healthy immune repertoire, but remain innocuous throughout life, can be activated and gain access to their target tissues. On their way, they take an ordered migration through peripheral lymphoid tissues and blood circulation, and undergo a profound reprogramming of their gene expression profile, which renders them fit to enter the nervous system and to interact with local cellule elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloisi F, Ria F, Adorini L (2000) Regulation of T cell responses by CNS antigen presenting cells: different roles for microglia and astrocytes. Immunol Today 21:141–147

    Article  PubMed  CAS  Google Scholar 

  • Anderson AC, Nicholson LB, Legge KL, Turchin V, Zaghouani H, Kuchroo VK (2000) High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: Mechanisms of selection of the self-reactive repertoire. J Exp Med 191:761–770

    Article  PubMed  CAS  Google Scholar 

  • Antony JM, Van Marle G, Opi iW, Butterfield DA, Mallet F, Yong VW, Wallace JL, Deacon RM, Warren K, Power C (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nature Neurosci 1088–1095

    Google Scholar 

  • Ben-Nun A, Wekerle H, Cohen IR (1981) Vaccination against autoimmune encephalomyelitis using attenuated cells of a T lymphocyte line reactive against myelin basic protein. Nature 292:60–61

    Article  PubMed  CAS  Google Scholar 

  • Berger T, Weerth S, Kojima K, Linington C, Wekerle H, Lassmann H (1997) Experimental autoimmune encephalomyelitis: the antigen specificity of T-lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab Invest 76:355–364

    PubMed  CAS  Google Scholar 

  • Bernard CCA (1977) Suppressor T cells prevent experimental autoimmune encephalomyelitis in mice. Clin Exp Immunol 29:100–109

    PubMed  CAS  Google Scholar 

  • Boehm T, Scheu S, Pfeffer K, Bleul CC (2003) Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LT®R. J Exp Med 198:757–769

    Article  PubMed  CAS  Google Scholar 

  • Brahic M, Bureau J-F (1997) Multiple sclerosis and retroviruses. Ann Neurol 42:984–985

    Article  PubMed  CAS  Google Scholar 

  • Brocke S, Gaur A, Piercy C, Gautam AM, Gijbels K, Fathman CG, Steinman L (1993) Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 365:642–644

    Article  PubMed  CAS  Google Scholar 

  • Brocke S, Hausmann S, Steinman L, Wucherpfennig KW (1998) Microbial peptides and superantigens in the pathogenesis of autoimmune diseases of the central nervous system. Semin Immunol 10:57–67

    Article  PubMed  CAS  Google Scholar 

  • Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene expression. Mol Neurobiol 2:41–89

    Article  PubMed  CAS  Google Scholar 

  • Chin RK, Lo JC, Kim O, Blink SE, Christiansen PA, Peterson P, Wang Y, Ware C, Fu Y-X (2003) Lymphotoxin pathway directs thymic Aire expression. Nature Immunol 4:1121–1127

    Article  CAS  Google Scholar 

  • Derbinski J, Schulte A, Kyewski B, Klein L (2001) Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nature Immunol 2:1032–1039

    Article  CAS  Google Scholar 

  • Dittel BN, Stefanova I, Germain RN, Janeway CA (1999) Cross-antagonism of a T cell clone expressing two distinct T cells receptors. Immunity 11:289–298

    Article  PubMed  CAS  Google Scholar 

  • Fischer H-G, Bonifas U, Reichmann G (2000) Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164:4826–4834

    PubMed  CAS  Google Scholar 

  • Flügel A, Berkowicz T, Ritter T, Labeur M, Jenne D, Li Z, Ellwart J, Willem M, Lassmann H, Wekerle H (2001) Migratory activity and functional changes of green fluorescent effector T cells before and during experimental autoimmune encephalomyelitis. Immunity 14:547–560

    Article  PubMed  Google Scholar 

  • Freund J, Lipton MM, Thompson GE (1953) Aspermatogenesis in the guinea pig induced by testicular tissue and adjuvants. J Exp Med 97:711–725

    Article  PubMed  CAS  Google Scholar 

  • Fujinami RS, Oldstone MBA (1985) Amino acid homology between the encephalitogenic site of myelin basic protein (MBP) and virus: mechanism for autoimmunity. Science 230:1043–1046

    Article  PubMed  CAS  Google Scholar 

  • Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signaling is required for CD4+ regulatory T cell function. J Exp Med 196:851–857

    Article  PubMed  CAS  Google Scholar 

  • Gaur A, Fathman CG, Steinman L, Brocke S (1993) SEB induced anergy: modulation of immune response to T cell determinants of myoglobin and myelin basic protein. J Immunol 150:3062–3069

    PubMed  CAS  Google Scholar 

  • Grima B, Zelenika D, Pessac B (1992) A novel transcript overlapping the myelin basic protein gene. J Neurochem 59:2318–2323

    Article  PubMed  CAS  Google Scholar 

  • Heber-Katz E, Acha-Orbea H (1989) The V-region disease hypothesis: evidence from autoimmune encephalomyelitis. Immunol Today 10:164–169

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF(2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36:118–124

    Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) Tlymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  PubMed  CAS  Google Scholar 

  • Hinz T, Weidmann E, Kabelitz D (2001) Dual TCR expressing T lymphocytes in health and disease. Int.Arch Allergy Appl Immunol 125:16–20 ai]Hori S, Haury M, Coutinho A, Demengeot J (2002) Specificity requirements for selection and effector functions of CD25+4+ regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice. Proc Natl Acad Sci USA 99:8213–8218

    Article  CAS  Google Scholar 

  • Huitinga I, Van Rooijen N, De Groot CJA, Uitdehaag BMJ, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172:1025–1033

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa HT, Williams LP, Segal BM (2002) Activation of APCs through CD40 or Toll-like receptor 9 overcomes tolerance and precipitates autoimmune disease. J Immunol 169:2781–2787

    PubMed  CAS  Google Scholar 

  • Jiang H, Zhang S-L, Pernis B (1992) Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science 256:1213–1215

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Ware R, Stall A, Flaherty L, Chess L, Pernis B (1995) Murine CD8+ T cells that specifically delete autologous CD4+ T cells expressing Vß8 TCR: a role of the Qa-1 molecule. Immunity 2:185–194

    Article  PubMed  CAS  Google Scholar 

  • Jolicoeur C, Hanahan D, Smith KM (1994) T-cell tolerance toward a transgenic β-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc Natl Acad Sci U S A 91:6707–6711

    Article  PubMed  CAS  Google Scholar 

  • Kawakami N, Lassmann S, Li Z, Odoardi F, Ritter T, Ziemssen T, Klinkert WEF, Ellwart J, Bradl M, Krivacic K, Lassmann H, Ransohoff RM, Volk H-D, Wekerle H, Linington C, Flügel A (2004) The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J Exp Med 199:185–197

    Article  PubMed  CAS  Google Scholar 

  • Kawakami N, Nägerl UV, Odoardi F, Bonhoeffer T, Wekerle H, Flügel A (2005) Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J Exp Med 201:1805–1814

    Article  PubMed  CAS  Google Scholar 

  • Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R (2003) Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 53:292–304

    Article  PubMed  CAS  Google Scholar 

  • Klein L, Klugmann M, Nave K-A, Tuohy VK, Kyewski BA (2000) Shaping of the autoreactive T cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nature Med 6:56–61

    Article  PubMed  CAS  Google Scholar 

  • Koh D-R, Fung-Leung W-P, Ho A, Gray D, Acha-Orbea H, Mak TW(1992) Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice. Science 256:1210–1213

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Berger T, Lassmann H, Hinze-Selch D, Zhang Y, Gehrmann J, Wekerle H, Linington C (1994) Experimental autoimmune panencephalitis and uveoretinitis in the Lewis rat transferred by T lymphocytes specific for the S100ß molecule, a calcium binding protein of astroglia. J Exp Med 180:817–829

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Lassmann H, Wekerle H, Linington C (1997) The thymus and self tolerance: co-existence of encephalitogenic S-100ß specific T cells and their nominal autoantigen, S-100ß, in the normal rat thymus. Int Immunol 9:897–904

    Article  PubMed  CAS  Google Scholar 

  • Lang HLE, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, Stuart DI, Bell JI, Jones EY, Fugger L (2002) A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nature Immunol 3:940–943

    Article  CAS  Google Scholar 

  • Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106:263–266 ai]Lassmann H, Brück W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–121

    Article  PubMed  CAS  Google Scholar 

  • Lider O, Reshef T, Béraud E, Ben-Nun A, Cohen IR (1988) Anti-idiotypic network induced by T-cell vaccination against experimental autoimmune encephalomyelitis. Science 239:181–183

    Article  PubMed  CAS  Google Scholar 

  • Linington C, Webb M, Woodhams PL (1984) A novel myelin-associated glycoprotein defined by a mouse monoclonal antibody. J Neuroimmunol 6:387–396

    Article  Google Scholar 

  • Linington C, Bradl M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130:443–454

    PubMed  CAS  Google Scholar 

  • Linington C, Morgan BP, Scolding NJ, Wilkins P, Piddlesden S, Compston DA (1989) The role of complement in the pathogenesis of experimental allergic encephalomyelitis. Brain 112:895–911

    Article  PubMed  Google Scholar 

  • Litzenburger T, Fässler R, Bauer J, Lassmann H, Linington C, Wekerle H, Iglesias A (1998) Blymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J Exp Med 188:169–180

    Article  PubMed  CAS  Google Scholar 

  • Litzenburger T, Blüthmann H, Morales P, Pham-Dinh D, Dautigny A, Wekerle H, Iglesias A (2000) Development of MOG autoreactive transgenic B lymphocytes: Receptor editing in vivo following encounter of a self-antigen distinct from MOG. J Immunol 165:5360–5366

    PubMed  CAS  Google Scholar 

  • Llewelyn M, Cohen J (2003) Superantigens: microbial agents that corrupt immunity. Lancet Infect Dis 2:156–162

    Article  Google Scholar 

  • Marrack P, Kappler JW (1990) The staphylococcal enterotoxins and their relatives. Science 248:705–710

    Article  PubMed  CAS  Google Scholar 

  • Martiney JA, Rajan AJ, Charles PC, Cerami A, Ulrich PC, Macphail S, Tracey KJ, Brosnan CF (1998) Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage deactivating agent. J Immunol 160:5588–5595

    PubMed  CAS  Google Scholar 

  • Mathis D, Benoist C (2004) Back to central tolerance. Immunity 20:509–516

    Article  PubMed  CAS  Google Scholar 

  • Mead RJ, Singhrao SK, Neal JW, Lassmann H, Morgan BP (2002) The membrane attack complex demyelination associated with a of complement causes severe cute axonal injury. J Immunol 168:458–465

    PubMed  CAS  Google Scholar 

  • Melms A, Schalke BCG, Kirchner T, Müller-Hermelink HK, Albert E, Wekerle H(1988) Thymus in myasthenia gravis: isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J Clin Invest 81:902–908

    Article  PubMed  CAS  Google Scholar 

  • Nemazee D, Hogquist KA (2003) Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr Opin Immunol 15:182–189

    Article  PubMed  CAS  Google Scholar 

  • Nussenzweig MC (1998) Immune receptor editing: revise and select. Cell 95:875–878

    Article  PubMed  CAS  Google Scholar 

  • Olivares-Villagómez D, Wang Y, Lafaille JJ (1998) Regulatory CD4+ T cells expressing endogenous T cell receptor chains protectmyelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 188:1883–1894

    Article  PubMed  Google Scholar 

  • Pender MP, Nguyen KB, McCombe PA, Kerr JFR (1991) Apoptosis in the nervous system in experimental allergic encephalomyelitis. J Neurol Sci 104:81–87

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet J, Tuke PW, Voisset C, Blond JL, Lalande B, Seigneurin JM, Mandr B, The Collaborative Research Group on Multiple Sclerosis (1997) Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc Natl Acad Sci U S A 94:7583–7588

    Article  PubMed  CAS  Google Scholar 

  • Piddlesden SJ, Storch MK, Hibbs M, Freeman AM, Lassmann H, Morgan BP (1994) Soluble recombinant complement receptor 1 inhibits inflammation and demyelination in antibody-mediated demyelinating experimental allergic encephalomyelitis. J Immunol 152:5477–5484

    PubMed  CAS  Google Scholar 

  • Posnett DN Yarilina AA (2001) Sleeping with the enemy—endogenous superantigens in humans. Immunity 15:503–506

    Article  PubMed  CAS  Google Scholar 

  • Pribyl TM, Campagnoni CW, Kampf K, Kashima T, Handley VW, McMahon J, Campagnoni AT (1993) The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous system. Proc Natl Acad Sci U S A 90:10695–10699

    Article  PubMed  CAS  Google Scholar 

  • Rott O, Wekerle H, Fleischer B (1992) Protection from experimental allergic encephalomyelitis by application of a bacterial superantigen. Int Immunol 4:347–354

    Article  PubMed  CAS  Google Scholar 

  • Sarantopoulos S, Lu LR, Cantor H (2004) Qa-1 restriction of CD8+ suppressor T cells. J Clin Invest 114:1218–1221

    Article  PubMed  CAS  Google Scholar 

  • Schiffenbauer J, Johnson HM, Butfiloski EJ, Wegrzyn L, Soos JM (1993) Staphylococcal enterotoxins can reactivate experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A 90:8543–8546

    Article  PubMed  CAS  Google Scholar 

  • Schlissel MS (2003) Regulating antigen-receptor gene assembly. Nature Rev Immunol 3:890–899

    Article  CAS  Google Scholar 

  • Schluesener HJ, Sobel RA, Linington C, Weiner HL (1987) A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol 139:4016–4021

    PubMed  CAS  Google Scholar 

  • Schmied M, Breitschopf H, Gold R, Zischler H, Rothe G, Wekerle H, Lassmann H (1993) Apoptosis of T lymphocytes-a mechanism to control inflammation in the brain. Am J Pathol 143:446–452

    PubMed  CAS  Google Scholar 

  • Schwartz M (2001) Protective autoimmunity as a T-cell response to central nervous system trauma: prospects for therapeutic vaccines. Progr Neurobiol 65:489–496

    Article  PubMed  CAS  Google Scholar 

  • Segal BM, Shevach EM (1996) IL-12 unmasks latent autoimmune disease in resistant mice. J Exp Med 184:771–775

    Article  PubMed  CAS  Google Scholar 

  • Serafini B, Columba-Cabezas S, Di Rosa F, Aloisi F (2000) Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol 157:1991–2002

    PubMed  CAS  Google Scholar 

  • Steinman L (1996) A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: a tale of smart bombs and the infantry. Proc Natl Acad Sci U S A 93:2253–2256

    Article  PubMed  CAS  Google Scholar 

  • Su I Tarakhovsky A (2000) B-1 cells: orthodox or conformist? Curr Opin Immunol 12:191–194

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Qin Y, Chluba J, Epplen JT, Wekerle H (1988) Suppression of experimentally induced autoimmune encephalomyelitis by cytolyticT-T-cell interactions. Nature 332:843–845

    Article  PubMed  CAS  Google Scholar 

  • Suter T, Malipiero U, Otten L, Ludewig B, Muelethaler-Mottet A, Mach B, Reith W, Fontana A (2000) Dendritic cells and differential use of MHC class II transactivator promoters in the central nervous system in experimental autoimmune encephalitis. Eur J Immunol 30:794–802

    Article  PubMed  CAS  Google Scholar 

  • Swierkosz JE, Swanborg RH (1977) Immunoregulation of experimental allergic encephalomyelitis: conditions for induction of suppressor cells and analysis of mechanism. J Immunol 119:1501–1506

    PubMed  CAS  Google Scholar 

  • Tran EH, Hoekstra K, Van Rooijen N, Dijkstra CD, Owens T (1998) Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage depleted mice. J Immunol 161:3767–3775

    PubMed  CAS  Google Scholar 

  • Uchida D, Hatakeyama S, Matsushima A, Han HW, Ishido S, Hotta H, Kudoh J, Shimizu N, Doucas V, Kuroda N, Matsumoto M (2004) AIRE functions as an E3 ubiquitin ligase. J Exp Med 199:167–172

    Article  PubMed  CAS  Google Scholar 

  • Vajkoczy P, Laschinger M, Engelhardt B (2001) α4-Integrin-VCAM binding mediates G protein independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108:557–565

    Article  PubMed  CAS  Google Scholar 

  • Van de Keere F, Tonegawa S (1998) CD4+ T cells prevent spontaneous experimental autoimmune encephalomyelitis in anti-myelin basic protein T cell receptor transgenic mice. J Exp Med 188:1875–1882

    Article  PubMed  Google Scholar 

  • Vanderlugt CL, Miller SD (2002) Epitope spreading in immune mediated diseases: implications for immunotherapy. Nature Rev Immunol 2:85–95

    Article  CAS  Google Scholar 

  • Waldner H, Collins M, Kuchroo VK (2004) Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J Clin Invest 113:990–997

    Article  PubMed  CAS  Google Scholar 

  • Walker LSK, Abbas AK (2002) The enemy within: keeping self-reactive T cells at bay in the periphery. Nature Rev Immunol 2:11–19

    Article  CAS  Google Scholar 

  • Wekerle H, Ketelsen U-P (1977) Intrathymic pathogenesis and dual genetic control of myasthenia gravis. Lancet i:678–680

    Article  Google Scholar 

  • Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9:271–277

    Article  Google Scholar 

  • Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705

    Article  PubMed  CAS  Google Scholar 

  • Zuklys S, Balciunaite G, Agarwal A, Fasler-Kan E, Palmer E, Holländer GA (2000) Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J Immunol 165:1976–1983

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wekerle, H. (2006). Breaking Ignorance: The Case of the Brain. In: Radbruch, A., Lipsky, P.E. (eds) Current Concepts in Autoimmunity and Chronic Inflammation. Current Topics in Microbiology and Immunology, vol 305. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29714-6_2

Download citation

Publish with us

Policies and ethics