Skip to main content

Supervised Classification Techniques

  • Chapter
Remote Sensing Digital Image Analysis

Abstract

The purpose of this chapter is to present the algorithms used for the supervised classification of single sensor remote sensing image data.

When data from a variety of sensors or sources (such as found in the integrated spatial data base of a Geographical Information System) requires analysis, more sophisticated tools may be required. These are the subject of Chap. 12 which deals with the topic of Multisource Classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 8

  • P. Atkinson, J.L. Cushnie, J.R. Townshend and A. Wilson, 1985: Improving Thematic Mapper Land Cover Classification Using Filtered Data. International Journal of Remote Sensing, 6, 955–961.

    Google Scholar 

  • J.A. Benediktsson, P.H. Swain and O.K. Esroy, 1990: Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data. IEEE Trans Geoscience and Remote Sensing, 28, 540–552.

    Google Scholar 

  • J.A. Benediktsson, P.H. Swain and O.K. Esroy, 1993: Conjugate-Gradient Neural Networks in Classification of Multisource and Very-High-Dimensional Remote Sensing Data. Int. J. Remote Sensing, 14, 2883–2903.

    Google Scholar 

  • J. Besag, 1986: On the Statistical Analysis of Dirty Pictures. J. Royal Statistical Soc. (B), 48, 259–302.

    MathSciNet  MATH  Google Scholar 

  • C.T.C. Burges, 1998: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2, 121–167.

    Article  Google Scholar 

  • B.V. Dasarathy, 1991: Nearest Neighbour (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos, California.

    Google Scholar 

  • R.O. Duda, P.E. Hart and D.G. Stork, 2001: Pattern Classification, 2e, N.Y., Wiley.

    Google Scholar 

  • B.C. Forster, 1982: The Derivation of Approximate Equations to Correct for the Landsat MSS Point Spread Function. Proc. Commission 1 (Primary Data Acquisition) Int. Soc. for Photogrammetry and Remote Sensing, Canberra, April, 6–10.

    Google Scholar 

  • J.E. Freund, 1992: Mathematical Statistics, 5e, New Jersey, Prentice Hall.

    Google Scholar 

  • S. Geman and D. Geman, 1984: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans Pattern Analysis and Machine Intelligence, PAMI-6, 721–740.

    Google Scholar 

  • P. Gong and P.J. Howarth, 1989: Performance Analyses of Probabilistic Relaxation Methods for Land-Cover Classification. Remote Sensing of Environment, 30, 33–42.

    Article  Google Scholar 

  • P. Gong and P.J. Howarth, 1990: The Use of Structural Information for Improving Land-Cover Classification Accuracies at the Rural-Urban Fringe. Photogrammetric Engineering and Remote Sensing, 56, 67–73.

    Google Scholar 

  • J.A. Gualtieri and R.F. Cromp, 1999: Support Vector Machines for Hyperspectral Remote Sensing Classification. Proc. SPIE, 3584, 221–232.

    Google Scholar 

  • R. Harris, 1985: Contextual Classification Post-Processing of Landsat Data Using a Probabilistic Relaxation Model. Int. J. Remote Sensing, 6, 847–866.

    Google Scholar 

  • G.F. Hepner, 1990: Artificial Neural Network Classification Using a Minimal Training Set: Comparison to Conventional Supervised Classification. Photogrammetric Engineering and Remote Sensing, 56, 469–473.

    Google Scholar 

  • C. Huang, L.S. Davis and J.R.G. Townshend, 2002: An Assessment of Support Vector Machines for Land Cover Classification. Int. J. Remote Sensing, 23, 725–749.

    Google Scholar 

  • B. Jeon and D.A. Landgrebe, 1992: Classification with Spatio-Temporal Interpixel Class Dependency Contexts. IEEE Trans. Geoscience and Remote Sensing, 30, 663–672.

    Google Scholar 

  • Y. Jung and P.H. Swain, 1996: Bayesian Contextual Classification based on Modified Mestimates and Markov Random Fields. IEEE Trans. Geoscience and Remote Sensing, 34, 67–75.

    Google Scholar 

  • R.L. Kettig and D.A. Landgrebe, 1976: Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects. IEEE Trans. Geoscience Electronics, GE-14, 19–26.

    Google Scholar 

  • N. Khazenie and M.M. Crawford, 1990: Spatial-Temporal Autocorrelation Model for Contextual Classification. IEEE Trans. Geoscience and Remote Sensing, 28, 529–539.

    Google Scholar 

  • J. Kittler and D. Pairman, 1985: Contextual Pattern Recognition Applied to Cloud Detection and Identification. IEEE Trans Geoscience and Remote Sensing, GE-23, 855–863.

    Google Scholar 

  • B.-C. Kuo and D.A. Landgrebe, 2002: A Robust Classification Procedure Based on Mixture Classifiers and Nonparametric Weighted Feature Extraction. IEEE Trans. Geoscience and Remote Sensing, 40, 2486–2494.

    Google Scholar 

  • T. Lee, 1984: Multisource Context Classification Methods in Remote Sensing. PhD Thesis, The University of New SouthWales, Kensington, Australia.

    Google Scholar 

  • T. Lee and J.A. Richards, 1985: A Low Cost Classifier for Multitemporal Applications. Int. J. Remote Sensing, 6, 1405–1417.

    Google Scholar 

  • T. Lee and J.A. Richards, 1989: Pixel Relaxation Labelling Using a Diminishing Neighbourhood Effect. Proc. IGARSS’89. Vancouver, 634–637.

    Google Scholar 

  • R.P. Lippmann, 1987: An Introduction to Computing with Neural Nets. IEEEASSP Magazine, April, 4–22.

    Google Scholar 

  • MATLAB, 1984-2004: Neural Network Toolbox. The MathWorks, Inc, MA.

    Google Scholar 

  • F. Melgani and L. Bruzzone, 2004: Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Trans. Geoscience and Remote Sensing, 42, 1778–1790.

    Google Scholar 

  • E. Mohn, N.L. Hjort and G.O. Storvik, 1987: A Simulation Study of Some Contextual Classification Methods for Remotely Sensed Data. IEEE Trans. Geoscience and Remote Sensing, 25, 796–804.

    Google Scholar 

  • N.J. Nilsson, 1965: Learning Machines. N.Y., McGraw-Hill.

    Google Scholar 

  • N.J. Nilsson, 1990: The Mathematical Foundations of Learning Machines. Palo Alto, Morgan Kaufmann.

    Google Scholar 

  • Y.H. Pao, 1989: Adaptive Pattern Recognition and Neural Networks. Reading, Addison-Wesley.

    Google Scholar 

  • J.D. Paola and R.A. Schowengerdt, 1995a: A Review and Analysis of Backpropagation Neural Networks for Classification of Remotely-Sensed Multi-Spectral Imagery. Int. J. Remote Sensing, 16, 3033–3058.

    Google Scholar 

  • J.D. Paola and R.A. Schowengerdt, 1995b: A Detailed Comparison of Backpropagation Neural Network and Maximum-Likelihood Classifiers for Urban Land Use Classification. IEEE Trans. Geoscience and Remote Sensing, 33, 981–996.

    Google Scholar 

  • S. Peleg and A. Rosenfeld, 1980: A New Probabilistic Relaxation Procedure. IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-2, 362–369.

    Google Scholar 

  • J.A. Richards, D.A. Landgrebe and P.H. Swain, 1981: On the Accuracy of Pixel Relaxation Labelling. IEEE Trans. Systems, Man and Cybernetics, SMC-11, 303–309.

    Google Scholar 

  • A. Rosenfeld, R. Hummel and S. Zucker, 1976: Scene Labeling by Relaxation Algorithms. IEEE Trans. Systems, Man and Cybernetics, SMC-6, 420–433.

    Google Scholar 

  • B. Schölkop and A Smola, 2002: Learning with Kernels. Mass., MIT Press.

    Google Scholar 

  • A.H.S. Solberg, T. Taxt and A.K. Jain, 1996: A Markov Random Field Model for Classification of Multisource Satellite Imagery. IEEE Trans. Geoscience and Remote Sensing, 34, 100–113.

    Google Scholar 

  • P.H. Swain and S.M. Davis (Eds.), 1978: Remote Sensing: The Quantitative Approach, N.Y., McGraw-Hill.

    Google Scholar 

  • P.H. Swain and H. Hauska, 1977: The Decision Tree Classifier: Design and Potential. IEEE Trans. Geoscience Electronics, GE-15, 142–147.

    Google Scholar 

  • P.H. Swain, S.B. Varderman and J.C. Tilton, 1981: Contextual Classification of Multispectral Image Data. Pattern Recognition, 13, 429–441.

    Article  Google Scholar 

  • J.T. Tou and R.C. Gonzalez, 1974: Pattern Recognition Principles, Mass., Addison-Wesley.

    Google Scholar 

  • F.E. Townsend, 1986: The Enhancement of Computer Classifications by Logical Smoothing. Photogrammetric Engineering and Remote Sensing, 52, 213–221.

    Google Scholar 

  • A.G. Wacker and D.A. Landgrebe, 1972: Minimum Distance Classification in Remote Sensing. First Canadian Symp. on Remote Sensing, Ottawa.

    Google Scholar 

  • S.D. Zenzo, R. Bernstein, S.D. Degloria and H.G. Kolsky, 1987: Gaussian Maximum Likelihood and Contextual Classification Algorithms for Multicrop Classification. IEEE Trans. Geoscience and Remote Sensing, 25, 805–814.

    Google Scholar 

  • S.D. Zenzo, S.D. Degloria, R. Bernstein and H.G. Kolsky, 1987: Gaussian Maximum Likelihood and Contextual Classification Algorithms for Multicrop Classification Experiments Using Thematic Mapper and Multispectral Scanner Sensor Data. IEEE Trans. Geoscience and Remote Sensing, 25, 815–824.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Supervised Classification Techniques. In: Remote Sensing Digital Image Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29711-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-29711-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25128-6

  • Online ISBN: 978-3-540-29711-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics