Walrasian versus quasi-competitive equilibrium and the core of a production economy

  • James C. Moore
Conference paper
Part of the Studies in Economic Theory book series (ECON.THEORY, volume 26)


This paper presents very general conditions guaranteeing that a quasicompetitive equilibrium is a Walrasian equilibrium. We also develop a generalization (and a simplified proof) of Nikaido’s and McKenzie’s extensions of the classic Debreu-Scarf theorem on core convergence, and apply the first result to obtain an equivalence between the set of Edgeworth equilibria and the set of Walrasian equilibria in a production economy.

Keywords and Phrases

Core convergence Indecomposability Irreducibility Quasi-competitive and Walrasian equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aliprantis, C.D., Brown, D.J., Burkinshaw, O.: Edgeworth equilibria. Econometrica 55, 1109–1137 (1987a)MathSciNetCrossRefGoogle Scholar
  2. Aliprantis, C.D., Brown, D.J., Burkinshaw, O.: Edgeworth equilibria in production economies. Journal of Economic Theory 43, 252–291 (1987b)CrossRefMathSciNetGoogle Scholar
  3. Aliprantis, C.D., Brown, D.J., Burkinshaw, O.: Existence and optimality of competitive equilibria. Berlin Heidelberg New York: Springer 1990Google Scholar
  4. Anderson, R.M.: Notions of core convergence. In: Hildenbrand, W., Mas-Colell, A. (eds.) Contributions to mathematical economics in honor of Gerard Debreu, Chapter 2, pp. 25–46. Amsterdam: North-Holland 1986Google Scholar
  5. Debreu, G.: Theory of value. New York: Wiley 1959Google Scholar
  6. Debreu, G., Scarf, H.: A limit theorem on the core of an economy. International Economic Review 4, 235–246 (1963)CrossRefGoogle Scholar
  7. Hurwicz, L., Richter, M.K.: The second welfare theorem of classical welfare economics. University of Minnesota;s Center for Economics Research, Department of Economics, Discussion Paper No. 312 (2001)Google Scholar
  8. McKenzie, L.: On the existence of general equilibrium for a competitive market. Econometrica 27, 54–71 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  9. McKenzie, L.: A limit theorem on the core. Economics Letters 27, 7–9 (1988)CrossRefMathSciNetGoogle Scholar
  10. Moore, J.C.: The existence of ‘compensated equilibrium’ and the structure of the pareto efficiency frontier. International Economic Review 16, 267–300 (1975)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  11. Moore, J.C.: Mathematical methods for economic theory, 1. Berlin Heidelberg New York: Springer 1999Google Scholar
  12. Nikaido, H.: Convex structures and economic theory. New York: Academic Press 1968Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • James C. Moore
    • 1
  1. 1.Department of Economics, Krannert School of ManagementPurdue UniversityWest LafayetteUSA

Personalised recommendations