Skip to main content

Part of the book series: Springer-Lehrbuch ((SLB))

  • 3890 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Zu Kapitel 4: Modellorganismen II: Wirbeltiere

Xenopus, Amphibien

  • Bard JBL (ed) (1994) Embryos, color atlas of development. Wolfe, London. Darin: Slack JMW Xenopus, pp 149–166

    Google Scholar 

  • Bernardini G et al (1999) Atlas of Xenopus development. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Billet FS, Wild AE (1975) Practical studies of animal development, amphibians. Chapman & Hall, London

    Google Scholar 

  • Grunz H (ed) (2004) The vertebrate organizer. Springer, Berlin Heidelberg New York; Darin u.a.: Kofron M et al: Maternal Veg-T and β-catenin: 1–9; Blitz IL, Cho KWY: Short-versus long-range effects of Spemann’s organizer: 11-24; DeRobertis EM, Wessely O: The molecular nature of Spemann’s organizer; Niehrs C: Wnt signals and antagonists:The molecular nature of Spemann’s head organizer: 127-150; Chen Y et al: Organizer activities mediated by retinoic acid: 173-186; Shi D-L: Wnt signalling and regulation of gastrulation movements: 187-200; Vignali R et al:Organizing the eye: 257-278; Carrasco AE, Blumberg B: A critical role of retinoic acid receptors in axial patterning and neural differentiation: 279-298; Bell E; Brivanlou AH: Molecular patterning of the embryonic brain: 299-314; Moreau M et al: Epidermal, neuronal and Glial cell fate choice in the embryo: 315-342

    Google Scholar 

  • Hadorn E (1970) Experimentelle Entwicklungsforschung, im besonderen an Amphibien. Verständliche Wissenschaft, Bd 77. Springer, Berlin

    Google Scholar 

  • Hausen P, Riebesoll M (1991) The early development of Xenopus laevis. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Houillon C (1972 ) Embryologie. Vieweg, Braunschweig

    Google Scholar 

  • Michael JC, Smith J (1999) An overview of Xenopus development. In:Sharpe PT, Mason I (1999) Methods in Molecular Biology, Molecular embryology: Methods and Protocols. Humana Press, Totowa/NJ, pp 331–340

    Google Scholar 

  • Nieuwkoop PD, Faber J (1975) Normal table of Xenopus laevis (Daudin), 2nd ed. North-Holland, Amsterdam

    Google Scholar 

  • Rugh R (1962) Experimental Embryology. Burgess, Minneapolis

    Google Scholar 

  • Sharpe PT, Mason I (1999) Methods in Molecular Biology, Molecular embryology: Methods and Protocols. Humana Press, Totowa, NJ Darin mehrere Artikel über Manipulation und Untersuchungsmethoden von Xenopusembryonen

    Google Scholar 

  • Spemann H (1936) Experimentelle Beiträge zu einer Theorie der Entwicklung. Springer, Berlin, Nachdruck 1968

    Google Scholar 

  • Spemann H (1938) Embryonic development and induction. Yale Univ Press, New Haven (reprinted by Hafner, New York, 1962)

    Google Scholar 

  • Wischnitzer S (1975) Atlas and laboratory guide for vertebrate embryology. McGraw-Hill, New York

    Google Scholar 

  • Agius E et al (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127:1173–1183

    PubMed  CAS  Google Scholar 

  • Ariizumi T et al (2000) Bioassays of inductive interactions in amphibian development. In: Tuan RS, Lo CW (eds) Developmental biology protocols, Vol I. Humana Press, Totowa, NJ, pp 89–112

    Google Scholar 

  • Bafico A et al (2001) Novel mechanisms of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3:683–686

    Article  PubMed  CAS  Google Scholar 

  • Baker JC et al (1999) Wnt signaling in Xenopus embryos inhibits bmp4 expression and actives neural development. Genes and Development 13:3149–3159

    Article  PubMed  CAS  Google Scholar 

  • Barth KA et al (1999) Bmp activity establishes a gradient of positional information through out the entire neural plate. Development 126:4977–4987

    PubMed  CAS  Google Scholar 

  • Chan AP, Etkin LD (2001) Patterning and lineage specification in the amphibian embryo. Curr Top Dev Biol 51:1–67

    PubMed  CAS  Google Scholar 

  • Chang P et al (1999) Organisation of Xenopus oocyte and egg cortices. Microscopy Research and Technique 44:415–429

    Article  PubMed  CAS  Google Scholar 

  • Daerdorff M et al (1998) Frizzled-8 is expressed in the Spemann organizer and plays a role in early morphogenesis. Development 125:2687–2700

    Google Scholar 

  • Dale L, Jones CM (1999) BMP signalling in early Xenopus development. Bioessays 21:751–760

    Article  PubMed  CAS  Google Scholar 

  • Dale L, Wardle FC (1999) A gradient of BMP activity specifies dorsal-ventral fates in early Xenopus embryos. Seminars in cell and developmental biology 10:311–317

    Article  Google Scholar 

  • DeRobertis EM et al (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nature Rev Gental 3:171–181

    Article  CAS  Google Scholar 

  • DeRobertis EM et al (2001) Molecular mechanisms of cell-cell signaling by the Spemann-Mangold organizer. Int J Dev Biol 45:189–197

    CAS  Google Scholar 

  • DeSouza FS, Niehrs C (2000) Anterior endoderm and head induction in early vertebrate em bryos. Cell Tissue Res 300:207–217

    Article  CAS  Google Scholar 

  • Dosch R et al (1997) BMP-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124:2325–2334

    PubMed  CAS  Google Scholar 

  • Dosch R, Niehrs C (2000) Requirement for anti-dorsalizing morphogenetic protein in organizer patterning. Mech Dev 90:195–203

    Article  PubMed  CAS  Google Scholar 

  • Farr GH et al (2000) Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J Cell Biol 148:691–702

    Article  PubMed  CAS  Google Scholar 

  • Faure S et al (2000) Endogenous patterns of TGF(beta) superfamily signaling during early Xenopus development. Development 127:2917–2931

    PubMed  CAS  Google Scholar 

  • Ferrel JE (1999) Xenopus oocyte maturation: new lessons from a good egg. Bioessays 21:833–842

    Article  Google Scholar 

  • Fetka I, Doederlin G, Bouwmeester T (2000) Neuroectodermal specification and regionalization of the Spemann organizer in Xenopus. Mechanisms of Development 93:49–58

    Article  PubMed  CAS  Google Scholar 

  • Fredieu JR et al (1997) Xwnt-8 and lithium can act upon either dorsal mesodermal or neuroectodermal cells to cause a loss of forebrain in Xenopus embryos. Dev Biol 186: 100–114

    PubMed  CAS  Google Scholar 

  • Gamse J, Sive H (2000) Vertebrate anteroposterior patterning: the Xenopus neurectoderm as a paradigm. Bioessays 22:976–986

    Article  PubMed  CAS  Google Scholar 

  • Gerhart J et al (1986) Amphibian early development. BioScience 36:541–549

    Article  Google Scholar 

  • Gerhart J et al (1989) Cortical rotation of the Xenopus egg: consequences of the antero-posterior pattern of embryonic dorsal development. Development Suppl:37–51

    Google Scholar 

  • Gerhart J (2001) Evolution of the organizer and the chordate body plan. Int J Dev Biol 45:133–153

    PubMed  CAS  Google Scholar 

  • Glinka A et al (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  PubMed  CAS  Google Scholar 

  • Grainger RM, Henry JJ, Henderson RA (1988) Reinvestigation of the role of optic vesicle in embryonic lens induction. Development 102:517–526

    PubMed  CAS  Google Scholar 

  • Gritsman K et al (2000) Nodal signaling patterns the organizer. Development 127:921–932

    PubMed  CAS  Google Scholar 

  • Grunz H (1997) Neural induction in amphibians. Curr Top Dev Biol 35:191–228

    Article  PubMed  CAS  Google Scholar 

  • Grunz H (1999) Gene expression and pattern formation during early embryonic development in amphibians. J Biosciences 24:515–518

    Article  CAS  Google Scholar 

  • Harland RM (2000) Neural induction. Curr Opin Genet Dev 10:357–362

    Article  PubMed  CAS  Google Scholar 

  • Harland RM, Gerhart J (1997) Formation and function of Spemann’s organizer. Ann Rev Cell Dev Biol 13:611–667

    Article  CAS  Google Scholar 

  • Henry JJ, Grainger RM (1990) Early tissue interactions leading to embryonic lens formation in Xenopus laevis. Dev Biol 141:149–163

    Article  PubMed  CAS  Google Scholar 

  • Hoppler S et al (1998) BMP-2/4 and WNT-8 cooperatively pattern the Xenopus mesoderm. Mech Dev 71:119–129

    Article  PubMed  CAS  Google Scholar 

  • Katsumoto K et al (2004) Cytoplasmic and molecular reconstruction of Xenopus embryos: synergy of dorsalizing and endo-mesodermalizing determinants drives early axial patterning. Development 131:1135–1144

    Article  PubMed  CAS  Google Scholar 

  • Keller RE et al (2000) Mechanisms of convergence and extension by cell intercalation. Philosophical transactions of the Royal Society London, Ser B Biol Sci 355:897–922

    Google Scholar 

  • Kessler DS, Melton DA (1995) Induction of dorsal mesoderm by soluble, mature Vg1 protein. Development 121:2155–2164

    PubMed  CAS  Google Scholar 

  • Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signalling requirements during gastrulation. Development 122:3173–3183

    PubMed  CAS  Google Scholar 

  • Mayor R et al (1999) Development of neural crest in Xenopus. Curr Top Dev Biol 1999:4385–4413

    Google Scholar 

  • Medina A, Wendler SR, Steinbeisser H (1997) Cortical rotation is required for correct spatial expression of NR3, SIA and GSC in Xenopus embryos. Int J Dev Biol 41:741–745

    PubMed  CAS  Google Scholar 

  • Niehrs C (1999) Head in the WNT, the molecular nature of Spemann’s head organizer. Trends in Genetics 15(8):314–319

    Article  PubMed  CAS  Google Scholar 

  • Niehrs C et al (2001) Dickkopf-1 and the Spemann-Mangold head organizer. Int J Dev Biol 45:237–240

    PubMed  CAS  Google Scholar 

  • Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nature Rev Genetics 5:425–434

    Article  CAS  Google Scholar 

  • Nieuwkoop PD (1977) Origin and establishment of embryonic polar axes in amphibian development. In:Moscona AA, Monroy A (eds) Pattern development. Curr Top Dev Biol 11: 115–132

    Google Scholar 

  • Nieuwkoop PD (1999) The neural induction process; its morphogenetic aspects. Int J Dev Biol 43(7 Spec No):614–623

    Google Scholar 

  • Ninomiya H et al (2004) Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning. Nature 430:364–367

    Article  PubMed  CAS  Google Scholar 

  • Otte AP et al (1988) Protein kinase C mediates neural induction in Xenopus laevis. Nature 334:618–620

    Article  PubMed  CAS  Google Scholar 

  • Penzel R et al (1997) Characterization and early embryonic expression of a neural specific transcription factor XSOX3 in Xenopus laevis. Int J Dev Biol 41:667–677

    PubMed  CAS  Google Scholar 

  • Piccolo S et al (1997) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598

    Article  Google Scholar 

  • Piccolo S et al (1997) Cleavage of chordin by xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91: 407–416

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer DC, Gard DL (1999) Microtubules in Xenopus oocytes are oriented with their minus-ends toward the cortex. Cell Motility and the Cytoskeleton 44:34–43

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y et al (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y et al (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signal in Xenopus. Nature (London) 376:333

    Article  PubMed  CAS  Google Scholar 

  • Schier AF, Shen MM (2000) Nodal signalling in vertebrate development. Nature 403:385–389

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) β-Catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57:191–198

    Article  PubMed  CAS  Google Scholar 

  • Sokol SY (1999) Wnt signaling in dorso-ventral axis specification in vertebrates. Curr Opin GEnet Dev 9:405–410

    Article  PubMed  CAS  Google Scholar 

  • St.-Amand AL, Klymkowsky MW (2001) Cadherins and catenins, Wnts and SOXs: Embryonic patterning in Xenopus. Int Review Cytol 2001:203291–203355

    Google Scholar 

  • Steinbeisser H et al (1993) Xenopus axis formation: induction of goosecoid by injected Xwnt8 and activin mRNAs. Development 118:499–507

    PubMed  CAS  Google Scholar 

  • Tiedemann H et al (2001) Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis. Develop Growth Differ 43:469–502

    Article  CAS  Google Scholar 

  • Wallingford JB, Fraser SE, Harland RM (2002) Convergent extension: the molecular control of polarized cell movement during embryonic development. Developmental Cell. 2:695–706

    Article  PubMed  CAS  Google Scholar 

  • Weinstein DC, Hemmati-Brivanlou A (1999) Neural induction. Ann Rev Cell Dev Biol 1999:15411–15433

    Google Scholar 

  • Xu Q, D’Amore PA, Sokol SY (1998) Functional and biochemical interactions of Wnts and FrzA, a secreted Wnt antagonist. Development 125:4767–4776

    PubMed  CAS  Google Scholar 

  • Yasuo H, Lemaire P (2001) Generation of the germ layers along the animal-vegetal axis in Xenopus laevis. Int J Dev Biol 45:229–235

    PubMed  CAS  Google Scholar 

  • Zoltewics JS, Gerhart JC (1997) The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage. Dev Biol 192:482–491

    Article  Google Scholar 

  • Zorn A (1997) Cell-cell signalling: frog frizbees. Curr Biol 7:R501–R504

    Article  PubMed  CAS  Google Scholar 

Danio rerio (Zebrafisch)

  • Bard JBL (ed) (1994) Embryos, color atlas of development. Wolfe, London. Darin: Metcalfe WK: The zebrafish, pp 135–147

    Google Scholar 

  • Nuesslein-Volhard C, Dahm R (2002) Zebrafish: A practical approach. Oxford Univ Press, Oxford

    Google Scholar 

  • Ostrander G, Bullock GR, Bunton T (2000) The laboratory fish. Elsevier Academic Press, New York

    Google Scholar 

  • Westerfield M (ed) (1998) The zebrafish book. A guide for the laboratory of the zebrafish (Brachydanio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Bernhardt RR (1999) Cellular and molecular bases of axonal pathfinding during embryogenesis of the fish central nervous system. J Neurobiol 38:137–160

    Article  PubMed  CAS  Google Scholar 

  • Brand M (1996) Development and genetics, zebrafish. Encyclopedia of Neuroscience 762:1–12

    Google Scholar 

  • Brand M, Granato M (1999) Keeping and raising zebrafish (Danio rerio). A practical approach. IRL Press, Oxford Washington

    Google Scholar 

  • Dodd A et al (2000) Zebrafish: bridging the gap between development and disease. Human molecular genetics 9:2443–2449

    Article  PubMed  CAS  Google Scholar 

  • Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10:252–256

    Article  PubMed  CAS  Google Scholar 

  • Driever W et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    PubMed  CAS  Google Scholar 

  • Furutani-Seiki M, Widtbrodt J (2004) Medaka and zebrafish, an evolutionary twin study. Mech Dev 121:629–637

    Article  PubMed  CAS  Google Scholar 

  • Hisaoka KK, Battle HI (1985) The normal developmental stages of the zebrafish Brachydanio rerio (Hamilton-Buchanan). J Morphol 102:311–328

    Article  Google Scholar 

  • Holley SA, Nüsslein-Volhard C (2000) Somitogenesis in zebrafish. Curr Top Dev Biol 2000:47247–47277

    Google Scholar 

  • Kelly C et al (2000) Maternally controlled β-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127:3899–3911

    PubMed  CAS  Google Scholar 

  • Kelly PD et al (2000) Genetic linkage mapping of zebrafish genes and ESTs. Genome research 10:558–567

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB et al (1995) Stages of embryonic development of the zebrafish. Dev Dynamics 203:253–310

    CAS  Google Scholar 

  • Laale HW (1977) The biology and use of zebrafish, Brachydanio rerio in fisheries research. J Fish Biol 10:121–173

    Article  Google Scholar 

  • Metscher BD, Ahlberg PE (1999) Zebrafish in context: uses of a laboratory model in comparative studies. Dev Biol 210:1–14

    Article  PubMed  CAS  Google Scholar 

  • Nasevicius A, Ekker SC (2000) Effective targeted gene ‚knockdown ‘in zebrafish. Nature Gen 26:216–220

    Article  CAS  Google Scholar 

  • Prince VE et al (1998) Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. Development 125:407–420

    PubMed  CAS  Google Scholar 

  • Ruvinsky I et al (2000) The evolution of paired appendages in vertebrates: T. box genes in the zebrafish. Dev Genes Evol 210:82–91

    Article  PubMed  CAS  Google Scholar 

  • Saude L et al (2000) Axis-inducing activities and cell fates of the zebrafish organizer. Development 127:3407–3417

    PubMed  CAS  Google Scholar 

  • Schier AF (2001) Axis formation in zebrafish. Curr Opin Genet Dev 11:393–404

    Article  PubMed  CAS  Google Scholar 

  • Schima A, Mitami H (2004) Medaka as a research organism: past, present and future. Mech Dev 211:599–604

    Article  CAS  Google Scholar 

  • Udvadia AJ, Linney E (2003) Windows into development: historic, current, and future perspectives on transgenic zebrafish. Developmental Biology 256(1):1–17

    Article  PubMed  CAS  Google Scholar 

  • Warga RM, Kimmel CB (1990) Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–580

    PubMed  CAS  Google Scholar 

  • Wilson SW et al (1997) Analysis of axon tract formation in the zebrafish brain: the role of territories of gene expression and their boundaries. Cell Tiss Res 290:189–196

    Article  CAS  Google Scholar 

Vogel

  • Bard JBL (ed) Embryos, color atlas of development. Wolfe, London, pp 167–182

    Google Scholar 

  • Billet FS, Wild AE (1975) Practical studies of animal development, birds. Chapman & Hall, London

    Google Scholar 

  • Houillon C (1972 ) Embryologie. Vieweg, Braunschweig

    Google Scholar 

  • Mason I (1999) The avian embryo: An overview. In: Sharpe PT, Mason I (eds) Methods in Molecular Biology; Molecular embryology: Methods and protocols: 215–220. Series Information: Methods in Molecular Biology. Vol. 97

    Google Scholar 

  • Mason I (1999) Chick embryos: Incubation and isolation. In: Sharpe PT, Mason I (eds) Methods in Molecular Biology; Molecular embryology: Methods and protocols: 221–224. Series Information: Methods in Molecular Biology. Vol 97

    Google Scholar 

  • Romanoff AL (1960) The avian embryo. McMillan, New York

    Google Scholar 

  • Rugh R (1962) Experimental embryology. Burgess, Minneapolis

    Google Scholar 

  • Schoenwolf GC (1995) Laboratory studies of vertebrate and invertebrate embryos: Guide and atlas of descriptive and experimental development. Prentice Hall

    Google Scholar 

  • Sharpe PT, Mason I (eds) (1999) Methods in Molecular Biology; Molecular embryology: Methods and protocols. Series Information: Methods in Molecular Biology Vol 97 Darin mehrere Artikel über moderne Methoden

    Google Scholar 

  • Wischnitzer S (1975) Atlas and laboratory guide for vertebrate embryology. McGraw-Hill, New York

    Google Scholar 

  • Boettger T et al (2001) The avian organizer. Int J Dev Biol 45 (1 Spec No):281–287

    PubMed  CAS  Google Scholar 

  • Darnell DK, Schoenwolf GC (2000) The chick embryo as a model system for analyzing mechanisms of development. In: Tuan RS, Lo CW (eds) Developmental biology protocols, Vol I, Humana Press, Totowa, NJ, pp 25–30

    Google Scholar 

  • Darnell DK, Schoenwolf GC (2000) Culture of avian embryos. In:Tuan RS, Lo CW (eds) Developmental biology protocols, Vol I, Humana Press, Totowa/NJ, pp 31–38

    Google Scholar 

  • Dupin E, Ziller C, LeDouarin NM (1998) The avian embryo as a model in developmental studies: chimeras and in vitro clonal analysis. Curr Top in Dev Biol 36:1–35

    CAS  Google Scholar 

  • Erickson CA, Reedy MV (1998) Neural crest development:the interplay between morphogenesis and cell differentiation. Curr Top Dev Biol 1998:40177–40209

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of a chick. J Morph 88:49–92

    Article  Google Scholar 

  • Kochav S, Eyal-Giladi H (1971) Bilateral symmetry in chick embryo:determination by gravity. Science 171:1027–1029

    PubMed  CAS  Google Scholar 

  • Ono T (2000) Ex ovo culture of avian embryos. In: Tuan RS, Lo CW (eds) Developmental biology protocols, Vol I. Humana Press, Totowa/NJ, pp 39–46

    Google Scholar 

  • Sander K (1973) Das Experiment: Einfache Beobachtungen an lebenden Hühnerembryonen. Biol unserer Zeit 3:14–19

    Article  Google Scholar 

  • Stern CD, Canning DR (1990) Origin of cells giving rise to mesoderm and endoderm in chick embryo. Nature 343:273–275

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE, Nikovits W, Christ B (2000) Molecular and cellular biology of avian somite development. Dev Dynamics 219:304–321

    Article  CAS  Google Scholar 

  • Viebahn C (2001) Hensen’s node. Genesis 29:96–103

    Article  PubMed  CAS  Google Scholar 

Maus

  • Bard JBL (ed) (1994) Embryos, color atlas of development. Wolfe, London. Darin: Bard JBL, Kaufmann MH: The mouse, pp 183–206

    Google Scholar 

  • Bürki K (1986) Experimental embryology of the mouse. Karger, Basel

    Google Scholar 

  • Goffinet AM, Rakic P (2000) Mouse brain development. Springer, Berlin Heidelberg

    Google Scholar 

  • Hedrich H (ed) (2004) The laboratory mouse. Elsevier Academic Press, New York

    Google Scholar 

  • Hogan B, Constantini F, Lacy E (1986) Manipulating the mouse embryo. Cold Spring Harbor, New York

    Google Scholar 

  • Kaufman MH, Bard JBL (1999) The anatomical basis of mouse development. Academic Press, New York

    Google Scholar 

  • Nagy A et al (2002) Manipulating the mouse embryo: A laboratory manual, 3rd ed. Cold Spring Harbor Lab Press

    Google Scholar 

  • Rugh R (1967) Experimental embryology. Burgess, Minneapolis

    Google Scholar 

  • Sharpe PT, Mason I (1999) Methods in Molecular Biology, Molecular embryology: Methods and Protocols. Humana Press, Totowa/NJ Darin mehrere Artikel über Manipulation und Untersuchungsmethoden von Mausembryonen

    Google Scholar 

  • Theiler K (1989) The house mouse. Atlas of embryonic development. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Wischnitzer S (1975) Atlas and laboratory guide for vertebrate embryology. McGraw-Hill, New York

    Google Scholar 

  • Beddington RSP (1994) Induction of a second neural axis by the mouse node. Development 120:613–620

    PubMed  CAS  Google Scholar 

  • Beddington RSP, Robertson EJ (1998) Anterior patterning in mouse. Trends Genet 14:277–283

    Article  PubMed  CAS  Google Scholar 

  • Doherty AS, Schultz RM (2000) Culture of preimplantation mouse embryos. In: Tuan RS, Lo CW (eds) Developmental biology protocols, Vol I. Humana Press, Totowa, NJ, pp 47–52

    Google Scholar 

  • Edwards RG (2003) Aspects of the molecular regulation of early mammalian development. Reproductive Biomedicine Online 6(1):97–113

    Article  PubMed  CAS  Google Scholar 

  • Erickson RP (1996) Mouse models of human genetic disease:which mouse is more like man? Bioessays 12:993–998

    Article  Google Scholar 

  • Huelsken J et al (2000) Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol 148:567–578

    Article  PubMed  CAS  Google Scholar 

  • Mullins LJ, Wilmut I, Mullins JJ (2004) Nuclear transfer in rodents. J of Physiol 554(1):4–12

    Article  CAS  Google Scholar 

  • Surani MAH, Barton SC, Norris ML (1986) Nuclear transplantation in the mouse:hereditable differences between parental genomes after activation of the embryonic genome. Cell 45:127–136

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Solter D (1989) The developmental fate of androgenetic, parthenogenetic, and gynogenetic cells in chimeric gastrulating mouse embryos. Genes Dev 2:1344–1351

    Google Scholar 

  • Wakayama T, Yanagimachi R (1999) Cloning the laboratory mouse. Sem Cell Dev Biol 10:253–258

    Article  CAS  Google Scholar 

  • Zernicka-Goetz M (2002) Patterning of the embryo: the first spatial decisions in the life of a mouse. Development. 129(4):815–829

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Entwicklung bedeutsamer Modellorganismen II: Wirbeltiere. In: Entwicklungsbiologie und Reproduktionsbiologie von Mensch und Tieren. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29472-4_4

Download citation

Publish with us

Policies and ethics