Advertisement

A Post-genomic View of the Mitochondrion in Malaria Parasites

  • A. B. Vaidya
  • M.W. Mather
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 295)

Abstract

Mitochondria in Plasmodium parasites have many characteristics that distinguish them from mammalian mitochondria. Selective targeting of malaria parasite mitochondrial physiology has been exploited in successful antimalarial chemotherapy. At present, our understanding of the functions served by the parasite mitochondrion is somewhat limited, but the availability of the genomic sequences makes it possible to develop a framework of possible mitochondrial functions by providing information on genes encoding mitochondrially targeted proteins. This review aims to provide an overview of mitochondrial physiology in this post-genomic era. Although in many cases direct experimental proof for their mitochondrial functionsmay not be available at present, descriptions of these potential mitochondrial proteins can provide a basis for experimental approaches.

Keywords

Plasmodium Falciparum Malate Dehydrogenase NADH Dehydrogenase Fumarate Hydratase Dihydroorotate Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445PubMedCrossRefGoogle Scholar
  2. Aikawa M (1971) Parasitological review. Plasmodium: the fine structure of malarial parasites. Exp Parasitol 30:284–320PubMedCrossRefGoogle Scholar
  3. Baldwin J, Farajallah AM, Malmquist NA, Rathod PK, Phillips MA (2002) Malarial dihydroorotate dehydrogenase. Substrate and inhibitor specificity. J Biol Chem 277:41827–41834PubMedGoogle Scholar
  4. Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5:2–15PubMedGoogle Scholar
  5. Bender A, van Dooren GG, Ralph SA, McFadden GI, Schneider G (2003) Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem Parasitol 132:59–66PubMedCrossRefGoogle Scholar
  6. Boyer PD (2001) New insights into one of nature’s remarkable catalysts, the ATP synthase. Mol Cell 8:246–247PubMedCrossRefGoogle Scholar
  7. Brumme S, Kruft V, Schmitz UK, Braun HP (1998) New insights into the co-evolution of cytochrome c reductase and the mitochondrial processing peptidase. J Biol Chem 273:13143–13149PubMedCrossRefGoogle Scholar
  8. Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quackenbush J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cunningham DA, Preiser PR, Bergman LW, Vaidya AB, van Lin LH, Janse CJ, Waters AP, Smith HO, White OR, Salzberg SL, Venter JC, Fraser CM, Hoffman SL, Gardner MJ, Carucci DJ (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419:512–519PubMedCrossRefGoogle Scholar
  9. Chan M, Sim TS (2003) Recombinant Plasmodium falciparum NADP-dependent isocitrate dehydrogenase is active and harbours a unique 26 amino acid tail. Exp Parasitol 103:120–126PubMedCrossRefGoogle Scholar
  10. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786PubMedCrossRefGoogle Scholar
  11. Dhanasekaran S, Chandra NR, Chandrasekhar Sagar BK, Rangarajan PN, Padmanaban G (2004) Delta-aminolevulinic acid dehydratase from Plasmodium falciparum: indigenous versus imported. J Biol Chem 279:6934–6942PubMedCrossRefGoogle Scholar
  12. Ellis KE, Clough B, Saldanha JW, Wilson RJ (2001) Nifs and Sufs in malaria. Mol Microbiol 41:973–981PubMedCrossRefGoogle Scholar
  13. Feagin JE, Werner E, Gardner MJ, Williamson DH, Wilson RJ (1992) Homologies between the contiguous and fragmented rRNAs of the two Plasmodium falciparum extrachromosomal DNAs are limited to core sequences. Nucleic Acids Res 20:879–887PubMedGoogle Scholar
  14. Foth BJ, McFadden GI (2003) The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. Int Rev Cytol 224:57–110PubMedGoogle Scholar
  15. Fry M, Pudney M (1992) Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4’-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol 43:1545–1553PubMedCrossRefGoogle Scholar
  16. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedGoogle Scholar
  17. Gutteridge WE, Dave D, Richards WH (1979) Conversion of dihydroorotate to orotate in parasitic protozoa. Biochim Biophys Acta 582:390–401PubMedGoogle Scholar
  18. Ji YE, Mericle BL, Rehkopf DH, Anderson JD, Feagin JE (1996) The Plasmodium falciparum 6 kb element is polycistronically transcribed. Mol Biochem Parasitol 81:211–223PubMedCrossRefGoogle Scholar
  19. Joy DA, Feng X, Mu J, Furuya T, Chotivanich K, Krettli AU, Ho M, Wang A, White NJ, Suh E, Beerli P, Su XZ (2003) Early origin and recent expansion of Plasmodium falciparum. Science 300:318–321PubMedCrossRefGoogle Scholar
  20. LaGier MJ, Tachezy J, Stejskal F, Kutisova K, Keithly JS (2003) Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiology 149:3519–3530PubMedCrossRefGoogle Scholar
  21. Lang-Unnasch N (1995) Plasmodium falciparum: antiserum to malate dehydrogenase. Exp Parasitol 80:357–359PubMedGoogle Scholar
  22. Li J, Maga JA, Cermakian N, Cedergren R, Feagin JE (2001) Identification and characterization of a Plasmodium falciparum RNA polymerase gene with similarity to mitochondrial RNA polymerases. Mol Biochem Parasitol 113:261–269PubMedCrossRefGoogle Scholar
  23. Lill R, Kispal G (2000) Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 25:352–356PubMedCrossRefGoogle Scholar
  24. Loyevsky M, LaVaute T, Allerson CR, Stearman R, Kassim OO, Cooperman S, Gordeuk VR, Rouault TA (2001) An IRP-like protein from Plasmodium falciparum binds to a mammalian iron-responsive element. Blood 98:2555–2562PubMedCrossRefGoogle Scholar
  25. Luttik MA, Overkamp KM, Kotter P, de Vries S, van Dijken JP, Pronk JT (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273:24529–24534PubMedCrossRefGoogle Scholar
  26. McIntosh MT, Srivastava R, Vaidya AB (1998) Divergent evolutionary constraints on mitochondrial and nuclear genomes of malaria parasites. Mol Biochem Parasitol 95:69–80PubMedCrossRefGoogle Scholar
  27. Perez-Martinez X, Antaramian A, Vazquez-Acevedo M, Funes S, Tolkunova E, d’Alayer J, Claros MG, Davidson E, King MP, Gonzalez-Halphen D (2001) Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J Biol Chem 276:11302–11309PubMedCrossRefGoogle Scholar
  28. Preiser PR, Wilson RJ, Moore PW, McCready S, Hajibagheri MA, Blight KJ, Strath M, Williamson DH (1996) Recombination associated with replication of malarial mitochondrial DNA. EMBO J 15:684–693PubMedGoogle Scholar
  29. Ralph SA, Van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI (2004) Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat RevMicrobiol 2:203–216Google Scholar
  30. Riordan CE, Ault JG, Langreth SG, Keithly JS (2003) Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44:138–147PubMedCrossRefGoogle Scholar
  31. Roberts CW, Roberts F, Henriquez FL, Akiyoshi D, Samuel BU, Richards TA, Milhous W, Kyle D, McIntosh L, Hill GC, Chaudhuri M, Tzipori S, McLeod R (2004) Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. Int J Parasitol 34:297–308PubMedGoogle Scholar
  32. Sato S, Clough B, Coates L, Wilson RJ (2004) Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of themalaria parasite Plasmodium falciparum. Protist 155:117–125PubMedCrossRefGoogle Scholar
  33. Sato S, Rangachari K, Wilson RJ (2003) Targeting GFP to themalarial mitochondrion. Mol Biochem Parasitol 130:155–158PubMedCrossRefGoogle Scholar
  34. Seeber F (2002) Biogenesis of iron-sulphur clusters in amitochondriate and apicomplexan protists. Int J Parasitol 32:1207–1217PubMedGoogle Scholar
  35. Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100:13207–13212PubMedCrossRefGoogle Scholar
  36. Srivastava IK, Morrisey JM, Darrouzet E, Daldal F, Vaidya AB (1999) Resistance mutations reveal the atovaquone-binding domain of cytochrome b inmalaria parasites. Mol Microbiol 33:704–711PubMedCrossRefGoogle Scholar
  37. Srivastava IK, Rottenberg H, Vaidya AB (1997) Atovaquone, a broad spectrumantiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem 272:3961–3966PubMedCrossRefGoogle Scholar
  38. Suplick K, Morrisey J, Vaidya AB (1990) Complex transcription from the extrachromosomal DNA encoding mitochondrial functions of Plasmodiumyoelii. Mol Cell Biol 10:6381–6388PubMedGoogle Scholar
  39. Suraveratum N, Krungkrai SR, Leangaramgul P, Prapunwattana P, Krungkrai J (2000) Purification and characterization of Plasmodium falciparum succinate dehydrogenase. Mol Biochem Parasitol 105:215–222PubMedCrossRefGoogle Scholar
  40. Takeo S, Kokaze A, Ng CS, Mizuchi D, Watanabe JI, Tanabe K, Kojima S, Kita K (2000) Succinate dehydrogenase in Plasmodium falciparum mitochondria: molecular characterization of the SDHA and SDHB genes for the catalytic subunits, the flavoprotein (Fp) and iron-sulfur (Ip) subunits. Mol Biochem Parasitol 107:191–205PubMedCrossRefGoogle Scholar
  41. Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, Cowman AF, McFadden GI (2004) Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol 137:13–21PubMedCrossRefGoogle Scholar
  42. Vaidya AB (1998) Mitochondrial physiology as a target for atovaquone and other antimalarials. In: Sherman IW (ed.) Malaria: Parasite biology, pathogenesis, and protection. ASM Press, Washington DC, pp 355–368Google Scholar
  43. Vaidya AB (2004) Mitochondrial and plastid functions as antimalarial drug targets. Curr Drug Targets Infect Disord 4:11–23PubMedCrossRefGoogle Scholar
  44. Vaidya AB, Akella R, Suplick K (1989) Sequences similar to genes for two mitochondrial proteins and portions of ribosomal RNA in tandemly arrayed 6-kilobase-pair DNA of a malarial parasite. Mol Biochem Parasitol 35:97–107PubMedCrossRefGoogle Scholar
  45. Vaidya AB, Arasu P (1987) Tandemly arranged gene clusters of malarial parasites that are highly conserved and transcribed. Mol Biochem Parasitol 22:249–257PubMedCrossRefGoogle Scholar
  46. Vaidya AB, Lashgari MS, Pologe LG, Morrisey J (1993a) Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol Biochem Parasitol 58:33–42PubMedCrossRefGoogle Scholar
  47. Vaidya AB, Morrisey J, Plowe CV, Kaslow DC, Wellems TE (1993b) Unidirectional dominance of cytoplasmic inheritance in two genetic crosses of Plasmodium falciparum. Mol Cell Biol 13:7349–7357PubMedGoogle Scholar
  48. Varadharajan S, Sagar BK, Rangarajan PN, Padmanaban G (2004) Localization of ferrochelatase in Plasmodium falciparum. Biochem J 384:429–436PubMedGoogle Scholar
  49. Wilson RJ (2002) Progress with parasite plastids. J Mol Biol 319:257–274PubMedGoogle Scholar
  50. Wilson RJ, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH (1996) Complete gene map of the plastidlike DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172PubMedGoogle Scholar
  51. Wrenger C, Muller S (2003) Isocitrate dehydrogenase of Plasmodium falciparum. Eur J Biochem 270:1775–1783PubMedCrossRefGoogle Scholar
  52. Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112PubMedGoogle Scholar
  53. Yagi T, Seo BB, Di Bernardo S, Nakamaru-Ogiso E, Kao MC, Matsuno-Yagi A (2001) NADH dehydrogenases: from basic science to biomedicine. J Bioenerg Biomembr 33:233–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • A. B. Vaidya
    • 1
  • M.W. Mather
    • 1
  1. 1.Center for Molecular Parasitology, Department of Microbiology and ImmunologyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations