Advertisement

Metabolic Complications of Severe Malaria

  • T. Planche
  • A. Dzeing
  • E. Ngou-Milama
  • M. Kombila
  • P. W. Stacpoole
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 295)

Abstract

Metabolic complications of malaria are increasingly recognized as contributing to severe and fatal malaria. Disorders of carbohydrate metabolism, including hypoglycaemia and lactic acidosis, are amongst the most important markers of disease severity both in adults and children infected with Plasmodium falciparum. Aminoacid and lipid metabolism are also altered by malaria. In adults, hypoglycaemia is associated with increased glucose turnover and quinine-induced hyperinsulinaemia, which causes increased peripheral uptake of glucose. Hypoglycaemia in children results from a combination of decreased production and/or increased peripheral uptake of glucose, due to increased anaerobic glycolysis. Patients with severe malaria should be monitored frequently for hypoglycaemia and treated rapidly with intravenous glucose if hypoglycaemia is detected. The most common aetiology of hyperlactataemia in severe malaria is probably increased anaerobic glucose metabolism, caused by generalized microvascular sequestration of parasitized erythrocytes that reduces blood flow to tissues. Several potential treatments for hyperlactataemia have been investigated, but their effect on mortality from severe malaria has not been determined.

Keywords

Lactic Acidosis Falciparum Malaria Severe Malaria Cerebral Malaria Nicotinamide Adenine Dinucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbenyega T, Angus BJ, Bedu-Addo G, Baffoe-Bonnie B, Guyton T, Stacpoole PW, Krishna S (2000) Glucose and lactate kinetics in children with severe malaria. J Clin Endocrinol Metab 85:1569–1576PubMedCrossRefGoogle Scholar
  2. Agbenyega T, Planche T, Bedu-Addo G, Ansong D, Owusu-Ofori A, Bhattaram VA, Nagaraja NV, Shroads AL, Henderson GN, Hutson AD, Derendorf H, Krishna S, Stacpoole PW (2003) Population kinetics, efficacy, and safety of dichloroacetate for lactic acidosis due to severe malaria in children. J Clin Pharmacol 43:386–396PubMedGoogle Scholar
  3. Allen SJ, O’Donnell A, Alexander ND, Clegg JB (1996) Severe malaria in children in Papua New Guinea. QJM 89:779–788PubMedCrossRefGoogle Scholar
  4. Association AH (1997) Pediatric Advanced Life Support. TexasGoogle Scholar
  5. Aung-Kyaw Zaw, Khin-Maung U, Myo-Thwe (1988) Endotoxaemia in complicated falciparum malaria. Trans R Soc Trop Med Hyg 82:513–514Google Scholar
  6. Baptista JL, Vervoort T, Van der Stuyft P, Wery M (1996) Changes in plasma lipid levels as a function of Plasmodium falciparum infection in Sao Tome. Parasite 3:335–340PubMedGoogle Scholar
  7. BMA and RPS (2004) British National Formulary. Pharmaceutical Press, LondonGoogle Scholar
  8. Breman JG (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64:1–11PubMedGoogle Scholar
  9. Castell LM, Bevan SJ, Calder P, Newsholme EA (1994) The role of glutamine in the immune system and in intestinal function in catabolic states. Amino Acids 7:231–243CrossRefGoogle Scholar
  10. Chen X, Iqbal N, Boden G (1999) The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J Clin Invest 103: 365–372PubMedGoogle Scholar
  11. Clark IA (1978) Does endotoxin cause both the disease and parasite death in acute malaria and babesiosis? Lancet 75–77Google Scholar
  12. Clark IA, Cowden WB (2003) The pathophysiology of falciparum malaria. Pharmacol Therapeutics 99:221–260Google Scholar
  13. Clark IA, Cowden WB, Butcher GA, Hunt NH (1987) Possible roles of tumor necrosis factor in the pathology of malaria. Am J Pathol 127Google Scholar
  14. Clark IA, Hunt NM, Cowden WB (1986) Oxygen derived free radicals in the pathogenesis of parasitic disease. Adv Parasitol 25:1–44PubMedGoogle Scholar
  15. Clark IA, Rockett KA, Cowden WB (1992) Possible central role of nitric oxide in conditions clinically similar to cerebral malaria. Lancet 340, 894–896PubMedGoogle Scholar
  16. Clavier N, Rahimy C, Falanga P, Ayivi B, Payen D (1999) No evidence for cerebral hypoperfusion during cerebral malaria. Crit Care Med 27:628–632PubMedGoogle Scholar
  17. Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, Mutin M, Sanmarco M, Sampol J, Dignat-George F (1999) In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest 104:93–102PubMedGoogle Scholar
  18. Combes V, Taylor TE, Juhan-Vague I, Mege JL, Mwenechanya J, Tembo M, Grau GE, Molyneux ME (2004) Circulating endothelial microparticles in malawian children with severe falciparum malaria complicated with coma. JAMA 291:2542–2544PubMedCrossRefGoogle Scholar
  19. Cowan G, Planche T, Agbenyega T, Bedu-Addo G, Owusu-Ofori A, Adebe-Appiah J, Agranoff D, Woodrow C, Castell L, Elford B, Krishna S (1999) Plasma glutamine levels and falciparum malaria. Trans R Soc Trop Med Hyg 93:616–618PubMedCrossRefGoogle Scholar
  20. Cuisinier-Raynal JC, Bire F, Clerc M, Bernard J, Sarrouy J (1990) Paludisme:le syndrome dysglobuliné mie-hypocholestérolémie. Med Trop 50:91–95Google Scholar
  21. Davis TME, Benn JJ, Suputtamongkol Y, Weinberg JB, Umpleby AM, Chierakul N, White NJ (1996) Lactate turnover and forearm lactate lactate metabolism in severe falciparum malaria. Endocrinol Metab 3:105–115Google Scholar
  22. Davis TME, Binh TQ, Thu le, TA, Long TT, Johnston W, Robertson K, Barrett PH (2002) Glucose and lactate turnover in adults with falciparum malaria: effect of complications and antimalarial therapy. Trans R Soc Trop Med Hyg 96:411–417PubMedCrossRefGoogle Scholar
  23. Davis TME, Looareesuwan S, Pukrittayakamee S, Levy JC, Nagachinta B, White NJ (1993) Glucose turnover in severe falciparum malaria. Metabolism 42:334–340PubMedGoogle Scholar
  24. Davis TME, Suputtamongkol Y, Spencer JL, Ford S, Chienkul N, Schulenburg WE, White NJ (1992) Measures of capillary permeability in acute falciparum malaria: relation to severity of infection and treatment. Clin Infect Dis 15:256–266PubMedGoogle Scholar
  25. Day NP, Phu NH, Bethell DP, Mai NT, Chau TT, Hien TT, White NJ (1996) The effects of dopamine and adrenaline infusions on acid-base balance and systemic haemodynamics in severe infection. Lancet 348:219–223PubMedGoogle Scholar
  26. Day NP, Phu NH, Mai NT, Bethell DB, Chau TT, Loc PP, Chuong LV, Sinh DX, Solomon T, Haywood G, Hien TT, White NJ (2000a) Effects of dopamine and epinephrine infusions on renal hemodynamics in severe malaria and severe sepsis. Crit Care Med 28:1353–1362PubMedGoogle Scholar
  27. Day NP, Phu NH, Mai NT, Chau TT, Loc PP, Chuong LV, Sinh DX, Holloway P, Hien TT, White NJ (2000b) The pathophysiologic and prognostic significance of acidosis in severe adult malaria. Crit Care Med 28:1833–1840PubMedGoogle Scholar
  28. Dekker E, Hellerstein MK, Romijn JA, Neese RA, Peshu N, Endert E, Marsh K, Sauerwein HP (1997a) Glucose homeostasis in children with falciparum malaria: precursor supply limits gluconeogenesis and glucose production. J Clin Endocrinol Metab 82:2514–2521PubMedCrossRefGoogle Scholar
  29. Dekker E, Romijn JA, Moeniralam HS, Waruiru C, Ackermans MT, Timmer JG, Endert E, Peshu N, Marsh K, Sauerwein HP (1997b) The influence of alanine infusion on glucose production in ‘malnourished’ African children with falciparum malaria. QJM 90:455–460PubMedCrossRefGoogle Scholar
  30. Dekker E, Romijn JA, Waruiru C, Ackermans MT, Weverling GJ, Sauerwein RW, Endert E, Peshu N, Marsh K, Sauerwein HP (1996) The relationship between glucose production and plasma glucose concentration in children with falciparum malaria. Trans R Soc Trop Med Hyg 90:654–657PubMedCrossRefGoogle Scholar
  31. Delafield F (1872) A handbook of post-mortem examination and of morbid anatomy. William Wood, New YorkGoogle Scholar
  32. Djoumessi S (1989) Serum lipids and lipoproteins during malaria infection. Pathol Biol 37:909–911PubMedGoogle Scholar
  33. Dondorp AM, Angus BJ, Chotivanich K, Silamut K, Ruangveerayuth R, Hardeman MR, Kager PA, Vreeken J, White NJ (1999) Red blood cell deformability as a predictor of anemia in severe falciparum malaria. Am J Trop Med Hyg 60:733–737PubMedGoogle Scholar
  34. Dondorp AM, Nyanoti M, Kager PA, Mithwani S, Vreeken J, Marsh K (2002) The role of reduced red cell deformability in the pathogenesis of severe falciparum malaria and its restoration by blood transfusion. Trans R Soc Trop Med Hyg 96:282–286PubMedCrossRefGoogle Scholar
  35. Dondorp AM, Pongponratn E, White NJ (2004) Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop 89:309–317PubMedGoogle Scholar
  36. Dugas MA, Proulx F, de Jaeger A, Lacroix J, Lambert M (2000) Markers of tissue hypoperfusion in pediatric septic shock. Intensive Care Med 26:75–83PubMedCrossRefGoogle Scholar
  37. Edwards CM, Stacpoole PW (1999) In: Betheridge DJ, Illingworth DR, Shepherd J (eds) Lipoproteins in health and disease. Oxford University Press, New YorkGoogle Scholar
  38. English M, Marsh V, Amukoye E, Lowe B, Murphy S, Marsh K (1996) Chronic salicylate poisoning and severe malaria. Lancet 347:1736–1737PubMedCrossRefGoogle Scholar
  39. English M, Muambi B, Mithwani S, Marsh K (1997a) Lactic acidosis and oxygen debt in African children with severe anaemia. QJM 90:563–569PubMedGoogle Scholar
  40. English M, Sauerwein R, Waruiru C, Mosobo M, Obiero J, Lowe B, Marsh K (1997b) Acidosis in severe childhood malaria. QJM 90:263–270PubMedGoogle Scholar
  41. English M, Wale S, Binns G, Mwangi I, Sauerwein H, Marsh K (1998) Hypoglycaemia on and after admission in Kenyan children with severe malaria. QJM 91:191–197PubMedCrossRefGoogle Scholar
  42. Faucher JF, Ngou-Milama E, Missinou MA, Ngomo R, Kombila M, Kremsner PG (2002) The impact of malaria on common lipid parameters. Parasitol Res. 88, 1040–1043PubMedCrossRefGoogle Scholar
  43. Feldman HA, Murphy FD (1945) The effect of alterations in blood volume on the anemia and hypoproteinemia. J Clin Invest 24:780–792CrossRefPubMedGoogle Scholar
  44. Fitz-Hugh T (1944) The cerebral form of malaria. Bull US Army Med Dept 83:39–48Google Scholar
  45. Flynn MA, Hanna FM, Lutz RN (1967) Estimation of body water compartments of preschool children I. Normal children. Am J Clin Nutr 20:1125–1128PubMedGoogle Scholar
  46. Fried M, Duffy PE (1996) Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272:1502–1504PubMedGoogle Scholar
  47. Gaskell JF, Miller WL (1920) Studies on malignant malaria in Macedonia. QJM 13:381–426Google Scholar
  48. Griffiths RD (1997) Outcome of critically ill patients after supplementation with glutamine. Nutrition 13:752–754PubMedGoogle Scholar
  49. Hero M, Harding SP, Riva CE, Winstanley PA, Peshu N, Marsh K (1997) Photographic and angiographic characterization of the retina of Kenyan children with severe malaria. Arch Ophthalmol 115:997–1003PubMedGoogle Scholar
  50. Hien TT, Day NPJ, Phu NH, Mai NTH, Chau TTH, Loc PP, Sinh DX, Chuong LV, Vinh H, Waller D, Peto TEA, White NJ (1996) A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. New Engl J Med 335:76–83CrossRefGoogle Scholar
  51. Holloway PA, Knox K, Bajaj N, Chapman D, White NJ, O’Brien R, Stacpoole PW, Krishna S (1995) Plasmodiumberghei infection: dichloroacetate improves survival in rats with lactic acidosis. Exp Parasitol 80: 624–632PubMedCrossRefGoogle Scholar
  52. Jones ES, MacGregor IA (1954) Pathological processes in disease. V. Blood physiology of Gambian children infected with Plasmodium falciparum. Ann Trop Med Parasitol 48:95–101PubMedGoogle Scholar
  53. Kelly GS (1998) Clinical applications of N-aectylcysteine. Alt Med Rev 3:114–127Google Scholar
  54. Krishna S, Agbenyega T, Angus BJ, Bedu-Addo G, Ofori-Amanfo G, Henderson G, Szwandt IS, O’Brien R, Stacpoole PW (1995) Pharmacokinetics and pharmacodynamics of dichloroacetate in children with lactic acidosis due to severe malaria. QJM 88:341–349PubMedGoogle Scholar
  55. Krishna S, Nagaraja NV, Planche T, Agbenyega T, Bedo-Addo G, Ansong D, Owusu-Ofori A, Shroads AL, Henderson G, Hutson A, Derendorf H, Stacpoole PW (2001) Population pharmacokinetics of intramuscular quinine in children with severe malaria. Antimicrob Agents Chemother 45:1803–1809PubMedGoogle Scholar
  56. Krishna S, Shoubridge EA, White NJ, Weatherall DJ, Radda GK (1983) Plasmodium yoelii: blood oxygen and brain perfusion in the infected mouse. Exp Parasitol 56:391–396PubMedCrossRefGoogle Scholar
  57. Krishna S, Supanaranond W, Pukrittayakamee S, Karter D, Supputamongkol Y, Davis TM, Holloway PA, White NJ (1994a) Dichloroacetate for lactic acidosis in severe malaria: a pharmacokinetic and pharmacodynamic assessment. Metabolism 43:974–981PubMedCrossRefGoogle Scholar
  58. Krishna S, Supanaranond W, Pukrittayakamee S, Kuile FT, Ruprah M, White NJ (1996) The disposition and effects of two doses of dichloroacetate in adults with severe falciparum malaria. Br J Clin Pharmacol 41:29–34PubMedCrossRefGoogle Scholar
  59. Krishna S, Taylor AM, Supanaranond W, Pukrittayakamee S, ter Kuile F, Tawfiq KM, Holloway PA, White NJ (1999) Thiamine deficiency and malaria in adults from southeast Asia. Lancet 353:546–549PubMedCrossRefGoogle Scholar
  60. Krishna S, Waller DW, ter Kuile F, Kwiatkowski D, Crawley J, Craddock CF, Nosten F, Chapman D, Brewster D, Holloway PA, et al. (1994b) Lactic acidosis and hypoglycaemia in children with severe malaria: pathophysiological and prognostic significance. Trans R Soc Trop Med Hyg 88:67–73PubMedCrossRefGoogle Scholar
  61. Kun JF, Mordmuller B, Perkins DJ, May J, Mercereau-Puijalon O, Alpers M, Weinberg JB, Kremsner PG (2001) Nitric oxide synthase 2(Lambarene) (G-954C), increased nitric oxide production, and protection against malaria. J Infect Dis 184:330–336PubMedCrossRefGoogle Scholar
  62. Levy B, Bollaert PE, Charpentier C, Nace L, Audibert G, Bauer P, Nabet P, Larcan A (1997) Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med 23:282–287PubMedCrossRefGoogle Scholar
  63. Levy B, Nace L, Bollaert PE, Dousset B, Mallie JP, Larcan A (1999) Comparison of systemic and regional effects of dobutamine and dopexamine in norepinephrine-treated septic shock. Intensive Care Med 25:942–948PubMedCrossRefGoogle Scholar
  64. Levy B, Sadoune LO, Gelot AM, Bollaert PE, Nabet P, Larcan A (2000) Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med 28:114–119PubMedGoogle Scholar
  65. Logan RW (1998) Forfar and Anneil’s Textbook of PediatricsGoogle Scholar
  66. Maegraith B, Fletcher A (1972). The pathogenesis of mammalian malaria. AdvParasitol 10:49–75Google Scholar
  67. Maitland K, Levin M, English M, Mithwani S, Peshu N, Marsh K, Newton CR (2003a) Severe P. falciparum malaria in Kenyan children: evidence for hypovolaemia. QJM 96:427–434PubMedCrossRefGoogle Scholar
  68. Maitland K, Pamba A, Newton CR, Levin M (2003b) Response to volume resuscitation in children with severe malaria. Pediatr Crit Care Med 4:426–431PubMedGoogle Scholar
  69. Maitland K, Pamba A, Newton CR, Lowe B, Levin M (2004) Hypokalemia in children with severe falciparum malaria. Pediatr Crit Care Med 5:81–85PubMedCrossRefGoogle Scholar
  70. Malloy JP, Brooks MH, Barry KG, Wilt S, McNeil JS (1967) Pathophysiology of acute falciparum malaria. II, fluid compartmentalization. Am J Med 43:745–750PubMedCrossRefGoogle Scholar
  71. Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M, Marsh V, Newton C, Winstanley P, Warn P, Peshu N et al. (1995) Indicators of life-threatening malaria in African children. N Engl J Med 332:1399–1404PubMedCrossRefGoogle Scholar
  72. Mi-Ichi F, Takeo S, Takashima E, Kobayashi T, Kim H, Wataya Y, Matsuda A, Torii M, Tsuboi T, Kita K (2003) In: Marzuki S, Verhoef J, Snippe H (eds) Tropical diseases, from molecule to bedside. Kluwer Academic, New York, pp 117–133Google Scholar
  73. Mohanty S, Mishra SK, Das BS, Satpathy SK, Mohanty D, Patnaik JK, Bose TK (1992) Altered plasma lipid pattern in falciparum malaria. Ann Trop Med Parasitol 86:601–606PubMedGoogle Scholar
  74. Molyneux ME, Looareesuwan S, Menzies IS, Grainger SL, Phillips RE, Wattanagoon Y, Thompson RP, Warrell DA (1989) Reduced hepatic blood flow and intestinal malabsorption in severe falciparum malaria. Am J Trop Med Hyg 40:470–476PubMedGoogle Scholar
  75. Neu J, Roig JC, Meetze WH, Veerman M, Carter C, Millsaps M, Bowling D, Dallas MJ, Sleasman J, Knight T, Auestad N (1997) Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J Pediatr 131:691–699PubMedGoogle Scholar
  76. Newton CR, Crawley J, Sowumni A, Waruiru C, Mwangi I, English M, Murphy S, Winstanley PA, Marsh K, Kirkham FJ (1997) Intracranial hypertension in Africans with cerebral malaria. Arch Dis Child 76:219–226PubMedGoogle Scholar
  77. Newton CR, Krishna S (1998) Severe falciparum malaria in children: current understanding of pathophysiology and supportive treatment. Pharmacol Ther 79:1–53PubMedCrossRefGoogle Scholar
  78. Newton CR, Marsh K, Peshu N, Kirkham FJ (1996) Perturbations of cerebral hemodynamics in Kenyans with cerebral malaria. Pediatr Neurol 15:41–49 Ngou-Milama E, Duong TH, Minko F, Dufillot D, Kombila K, Richard-Lenoble D, Mouray H (1995) Profil lipidique au cours d’une thérapeutique curative spécifique du paludisme maladie chez l’enfant gabonais. Cahiers Santé 5:95–99PubMedCrossRefGoogle Scholar
  79. Olsson B, Johansson M, Gabrielsson J, Bolme P (1988). Pharmacokinetics and bioavailability of reduced and oxidised N-actylcysteine. Eur J Clin Pharmacol 34:77–82PubMedCrossRefGoogle Scholar
  80. Orringer CE, Eustace JC, Wunsch CD, Gardner LB (1977) Natural history of lactic acidosis after grand-mal seizures. A model for the study of an anion-gap acidosis not associated with hyperkalemia. N Engl J Med 297:796–799PubMedCrossRefGoogle Scholar
  81. Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF (2001) Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med 27:84–90PubMedCrossRefGoogle Scholar
  82. Pathan N, Faust SN, Levin M (2003) Pathophysiology of meningococcal meningitis and septicaemia. Arch Dis Child 88:601–607PubMedCrossRefGoogle Scholar
  83. Peterson WF (1926) Blood sugar during the crisis of malarial fever. Proc Soc Exp Biol Med 23:753–754Google Scholar
  84. Planche T, Agbenyega T, Bedu-Addo G, Ansong D, Owusu-Ofori A, Micah F, Anakwa C, Asafo-Agyei E, Hutson A, Stacpoole PW, Krishna S (2003) A prospective comparison of malaria with other severe diseases in African children: prognosis and optimization of management. Clin Infect Dis 37:890–897PubMedCrossRefGoogle Scholar
  85. Planche T, Dzeing A, Emmerson AC, Onanga M, Kremsner PG, Engel K, Kombila M, Ngou-Milama E, Krishna S (2002) Plasma glutamine and glutamate concentrations in Gabonese children with Plasmodium falciparum infection. QJM 95:89–97PubMedCrossRefGoogle Scholar
  86. Planche T, Onanga M, Schwenk A, Dzeing A, Borrmann S, Faucher JF, Wright A, Bluck L, Ward L, Kombila M, Kremsner PG, Krishna S (2004). Assessment of volume depletion in children with malaria. Plos Med 1:e18PubMedCrossRefGoogle Scholar
  87. Pukrittayakamee S, Krishna S, Ter Kuile F, Wilaiwan O, Williamson DH, White NJ (2002) Alanine metabolism in acute falciparum malaria. Trop Med Int Health 7:911–918PubMedCrossRefGoogle Scholar
  88. Pukrittayakamee S, White NJ, Davis TM, Looareesuwan S, Supanaranond W, Desakorn V, Chaivisuth B, Williamson DH (1992) Hepatic blood flow and metabolism in severe falciparum malaria: clearance of intravenously administered galactose. Clin Sci (Lond) 82:63–70Google Scholar
  89. Pukrittayakamee S, White NJ, Davis TM, Supanaranond W, Crawley J, Nagachinta B, Williamson DH (1994) Glycerol metabolism in severe falciparum malaria. Metabolism 43:887–892PubMedCrossRefGoogle Scholar
  90. Rae C, Maitland A, Bubb WA, Hunt NH (2000) Dichloroacetate (DCA) reduces brain lactate but increases brain glutamine in experimental cerebral malaria: a1H-NMR study. Redox Rep 5:141–143PubMedCrossRefGoogle Scholar
  91. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  92. Rivers EP, Nguyen HB, Huang DT, Donnino M (2004) Early goal-directed therapy. Crit Care Med 32:314–315; author reply 315PubMedGoogle Scholar
  93. Saeed BO, Atabani GS, Nawwaf A, Nasr AM, Abdulhadi NH, Abu Zeid YA, Alrasoul MA, Bayoumi RA (1990) Hypoglycaemia in pregnant women with malaria. Trans R Soc Trop Med Hyg 84:349–350PubMedCrossRefGoogle Scholar
  94. Sexton AC, Good RT, Hansen DS, D’Ombrain MC, Buckingham L, Simpson K, Schofield L (2004) Transcriptional profiling reveals suppressed erythropoiesis, up-regulated glycolysis, and interferon-associated responses in murine malaria. J Infect Dis 189:1245–1256PubMedCrossRefGoogle Scholar
  95. Shelby JP, White J, Ganesan K, Rathod PK, Chiu DT (2003) A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 100:14618–14622PubMedCrossRefGoogle Scholar
  96. Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, Simpson JA, Hien TT, White NJ (1999) A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 155: 395–410PubMedGoogle Scholar
  97. Singh B, Choo KE, Ibrahim J, Johnston W, Davis TM (1998) Non-radioisotopic glucose turnover in children with falciparum malaria and enteric fever. Trans R Soc Trop Med Hyg 92:532–537PubMedCrossRefGoogle Scholar
  98. Sitprija V, Indraprasit S, Pochanugool C, Benyajati C, Piyaratn P (1967) Renal failure in malaria. Lancet:185–188Google Scholar
  99. Stacpoole PW (1989) The pharmacology of dichloroacetate. Metabolism 38:1124–1144PubMedGoogle Scholar
  100. Stacpoole PW (1993) Lactic acidosis. Endocrinol Metab Clin North Am 22:221–245PubMedGoogle Scholar
  101. Stacpoole PW (2004) In: Clinical studies in medical biochemistry. Oxford University Press, New YorkGoogle Scholar
  102. Stacpoole PW, Henderson GN, Yan Z, Cornett R, James MO (1998) Pharmacokinetics, metabolism and toxicology of dichloroacetate. Drug Metab Rev 30: 499–539PubMedGoogle Scholar
  103. Stettler N, Schutz Y, Whitehead R, Jequier E (1992) Effect of malaria and fever on energy metabolism in Gambian children. Pediatr Res 31:102–106PubMedGoogle Scholar
  104. Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82:89–100PubMedCrossRefGoogle Scholar
  105. Suistomaa M, Ruokonen E, Kari A, Takala J (2000) Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions. Shock 14:8–12PubMedGoogle Scholar
  106. Sáez-Llorens X, McCracken GH (1993) Sepsis syndrome and septic shock in pediatrics: Current concepts of terminology, pathophysiology, and management. J Pediatri 123:497–508Google Scholar
  107. Taylor TE, Borgstein A, Molyneux ME (1993). Acid-base status in paediatric Plasmodium falciparum malaria. QJM 86:99–109PubMedGoogle Scholar
  108. Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JG, Fosiko NG, Lewallen S, Liomba NG, Molyneux ME (2004) Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 10:143–145PubMedGoogle Scholar
  109. Taylor TE, Molyneux ME, Wirima JJ, Fletcher A, Morris K (1988) Blood glucose levels in Malawian children before and during the adminstration of intravenous quinine for severe falciparum malaria. N Engl J Med 319:1040–1047PubMedGoogle Scholar
  110. Taylor-Robinson A (2004) In-vitro model offers insight into the pathophysiology of severe malaria. Lancet 363:1661–1663PubMedGoogle Scholar
  111. Tenenbein M (1984) Hypersensitivity-like reactions to N-acetylcysteine. Vet Human Toxicol 26:S3–S5Google Scholar
  112. Treeprasertsuk S, Krudsood S, Tosukhowong T, Maek-A-Nantawat W, Vannaphan S, Saengnetswang T, Looareesuwan S, Kuhn WF, Brittenham G, Carroll J (2003) N-acetylcysteine in severe falciparummalaria in Thailand. Southeast Asian J Trop Med Public Health 34:37–42PubMedGoogle Scholar
  113. Treutiger CJ, Hedlund I, Helmby H, Carlson J, Jepson A, Twumasi P, Kwiatkowski D, Greenwood B, Wahlgren M (1992) Rosette formation in Plasmodium falciparum isolates and anti-rosette activity of sera from Gambians with cerebral or uncomplicated malaria. Am J Trop Med Hyg 46:503–510PubMedGoogle Scholar
  114. Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, Gatter KC, Newbold CI, Pukritayakamee S, Nagachinta B et al. (1994) An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 145:1057–1069PubMedGoogle Scholar
  115. Usawattanakul W, Tharavanij S, Warrell DA, Looareesuwan S, White NJ, Supavej S, Soikratoke S (1985) Factors contributing to the development of cerebral malaria. II. Endotoxin Clin Exp Immunol 61:562–568Google Scholar
  116. van Hensbroek MB, Onyiorah E, Jaffar S, Schneider G, Palmer A, Frenkel J, Enwere G, Forck S, Nusmeijer A, Bennett S, Greenwood B, Kwiatkowski D (1996a) A trial of artemether or quinine in children with cerebral malaria. N Engl J Med 335:69–75PubMedGoogle Scholar
  117. van Hensbroek MB, Palmer A, Onyiorah E, Schneider G, Jaffar S, Dolan G, Memming H, Frenkel J, Enwere G, Bennett S, Kwiatkowski D, Greenwood B (1996b) The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. J Infect Dis 174:1091–1097PubMedGoogle Scholar
  118. van Thien H, Ackermans MT, Dekker E, Thanh Chien VO, Le T, Endert E, Kager PA, Romijn JA, Sauerwein HP (2001) Glucose production and gluconeogenesis in adults with cerebral malaria. QJM 94:709–715PubMedGoogle Scholar
  119. van Thien H, Ackermans MT, Weverling GJ, Thanh Chien VO, Endert E, Kager PA, Sauerwein HP (2004a) Influence of prolonged starvation on glucose kinetics in pregnant patients infected with Plasmodium falciparum. Clin Nutr 23:59–67PubMedGoogle Scholar
  120. Van Thien H, Weverling G, Ackermans MT, Canh Hung N, Endert E, Kager PA, Sauerwein HP (2004b) Free fatty acids are not involved in the regulation of gluconeogenesis and glycogenolysis in adults with uncomplicated P. falciparum malaria. Am J Physiol Endocrinol MetabGoogle Scholar
  121. Vander Jagt DL, Hunsaker LA, Campos NM, Baack BR (1990) D-lactate production in erythrocytes infected with P. falciparum. Mol Biochem Parasitol 42:277–284Google Scholar
  122. Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P, Nolan DP, Lins L, Van Den Abbeele J, Pays A, Tebabi P, Van Xong H, Jacquet A, Moguilevsky N, Dieu M, Kane JP, De Baetselier P, Brasseur R, Pays E (2003) Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422:83–87PubMedCrossRefGoogle Scholar
  123. Waller D, Krishna S, Crawley J, Miller K, Nosten F, Chapman D, ter Kuile FO, Craddock C, Berry C, Holloway PA et al. (1995). Clinical features and outcome of severe malaria in Gambian children. Clin Infect Dis 21:577–587PubMedGoogle Scholar
  124. Warrell DA, Looareesuwan S, Warrell MJ, Kasemsarn P, Intaraprasert R, Bunnag D, Harinasuta T (1982) Dexamethasone proves deleterious in cerebral malaria. A double-blind trial in 100 comatose patients. N Engl J Med 306:313–319PubMedCrossRefGoogle Scholar
  125. Warrell DA, White NJ, Veall N, Looareesuwan S, Chanthavanich P, Phillips RE, Karbwang J, Pongpaew P, Krishna S (1988) Cerebral anaerobic glycolysis and reduced cerebral oxygen transport in human cerebral malaria. Lancet 2: 534–538PubMedGoogle Scholar
  126. Watt G, Jongsakul K, Ruangvirayuth R (2002) A pilot study of N-acetylcysteine as adjunctive therapy for severe malaria. QJM 95:285–290PubMedCrossRefGoogle Scholar
  127. Welch SB, Nadel S (2003) Treatment of meningococcal infection. Arch Dis Child 88:608–614PubMedCrossRefGoogle Scholar
  128. White NJ, Ho M (1992) The pathophysiology of malaria. Adv Parasitol 31:134–173CrossRefGoogle Scholar
  129. White NJ, Miller KD, Marsh K, Berry CD, Turner RC, Williamson DH, Brown J (1987) Hypoglycaemia in African children with severe malaria. Lancet i:708–711Google Scholar
  130. White NJ, Warrell DA, Chanthavanich P, Looareesuwan S, Warrell MJ, Krishna S, Williamson DH, Turner RC (1983) Severe hypoglycemia and hyperinsulinemia in falciparum. N Engl J Med 309:61–66PubMedCrossRefGoogle Scholar
  131. White NJ, Warrell DA, Looareesuwan S, Chanthavanich P, Phillips RE, Pongpaew P (1985) Pathophysiological and prognostic significance of cerebrospinal-fluid lactate in cerebral malaria. Lancet 1:776–778PubMedGoogle Scholar
  132. Zimet I (1988) Acetylcysteine: A drug that is much more than a mucokinetic. Biomed Phamacother 42:513–520Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • T. Planche
    • 1
    • 2
  • A. Dzeing
    • 3
  • E. Ngou-Milama
    • 4
  • M. Kombila
    • 3
  • P. W. Stacpoole
    • 5
  1. 1.Division of Cellular and Molecular Medicine, Centre for InfectionSt. George’s University of LondonCranmer Terrace, LondonUK
  2. 2.Medical Research UnitAlbert Schweitzer HospitalLambarénéGabon
  3. 3.Département de Parasitologie, Mycologie et Médecine Tropicale, Faculté de Mé decineUniversité des Sciences de la SantéLibrevilleGabon
  4. 4.Département de Biochimie, Faculté de MédecineUniversité des Sciences de la SantéLibrevilleGabon
  5. 5.Departments of Medicine (Division of Endocrinology and Metabolism), Biochemistry and Molecular Biology and the General Clinical Research CenterUniversity of FloridaGainsvilleUSA

Personalised recommendations