Functional Proteome and Expression Analysis of Sporozoites and Hepatic Stages of Malaria Development

  • P. L. Blair
  • D. J. Carucci
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 295)


An evolution in modern malaria research occurred with the completion of the Plasmodium falciparum genome project and the onset and application of novel post-genomic technologies. Corresponding with these technological achievements are improvements in accessing and purifying parasite material from ‘hard-to-reach’ stages of malaria development. Characterization of gene and protein expression in the infectious sporozoite and subsequent liver-stage parasite development is critical to identify novel pre-erythrocytic drug and vaccine targets as well as to understand the basic biology of this deadly parasite. Both transcriptional and proteomic analyses on these stages and the remaining stages of development will assist in the ‘credentialing process’ of the complete malaria genome.


Malaria Parasite Plasmodium Falciparum Proteome Project Merozoite Invasion Falciparum Sporozoite Sporozoite Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lasonder E, et al. (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419:537–542PubMedCrossRefGoogle Scholar
  2. 2.
    Carucci DJ (2001) Functional genomic technologies applied to the control of the human malaria parasite, Plasmodium falciparum. Pharmacogenomics 2:137–142PubMedCrossRefGoogle Scholar
  3. 3.
    Carucci DJ (2002) Technologies for the study of gene and protein expression in Plasmodium. Philos Trans R Soc Lond B Biol Sci 357:13–16PubMedGoogle Scholar
  4. 4.
    Gardner MJ, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedGoogle Scholar
  5. 5.
    Gardner MJ, et al. (2002) Sequence of Plasmodium falciparum chromosomes 2, 10, 11 and 14. Nature 419:531–534PubMedGoogle Scholar
  6. 6.
    Hall N, et al. (2002) Sequence of Plasmodium falciparum chromosomes 1, 3-9 and 13. Nature 419:527–531PubMedCrossRefGoogle Scholar
  7. 7.
    Hyman RW, et al. (2002) Sequence of Plasmodium falciparum chromosome 12. Nature 419:534–537PubMedCrossRefGoogle Scholar
  8. 8.
    Carlton JM, et al. (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419:512–519PubMedCrossRefGoogle Scholar
  9. 9.
    Le Roch KG, et al. (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–1508PubMedGoogle Scholar
  10. 10.
    Le Roch KG, et al. (2002) Monitoring the chromosome 2 intraerythrocytic transcriptome of Plasmodium falciparum using oligonucleotide arrays. Am J Trop Med Hyg 67:233–243PubMedGoogle Scholar
  11. 11.
    Bozdech Z, et al. (2003) The Transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:E5PubMedCrossRefGoogle Scholar
  12. 12.
    Florens L, et al. (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520–526PubMedCrossRefGoogle Scholar
  13. 13.
    Srinivasan P, et al. (2003) Analysis of the plasmodium and anopheles transcriptomes during oocyst differentiation. J Biol ChemGoogle Scholar
  14. 14.
    Doolan DL, et al. (2003) Utilization of genomic sequence information to develop malaria vaccines. J Exp Biol 206:3789–3802PubMedCrossRefGoogle Scholar
  15. 15.
    Carucci DJ (2001) Genomic tools for gene and protein discovery in malaria: toward new vaccines. Vaccine 19:2315–2318PubMedCrossRefGoogle Scholar
  16. 16.
    Hoffman SL, Carucci DJ (2000) Plasmodium falciparum: from genomic sequence to vaccines and drugs. Novartis Found Symp 229:94–100; discussion 100-104PubMedGoogle Scholar
  17. 17.
    Hoffman SL, et al. (1998) From genomics to vaccines: malaria as a model system. Nat Med 4:1351–1353PubMedCrossRefGoogle Scholar
  18. 18.
    Hoffman SL, et al. (2002) Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis 185:1155–1164PubMedCrossRefGoogle Scholar
  19. 19.
    Carucci DJ (2000) Malaria research in the post-genomic era. Parasitol Today 16:434–438PubMedCrossRefGoogle Scholar
  20. 20.
    Waters A (2003) Comparative genomics of malaria parasites and its exploitation in a rodent malaria model. Bioinformatics 19(Suppl 2):II245PubMedGoogle Scholar
  21. 21.
    Patankar S, et al. (2001) Serial analysis of gene expression in Plasmodium falciparum reveals the global expression profile of erythrocytic stages and the presence of anti-sense transcripts in the malarial parasite. Mol Biol Cell 12:3114–3125PubMedGoogle Scholar
  22. 22.
    Rathod PK, et al. (2002) DNA microarrays for malaria. Trends Parasitol 18:39–45PubMedCrossRefGoogle Scholar
  23. 23.
    Hayward RE, et al. (2000) Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria. Mol Microbiol 35:6–14PubMedCrossRefGoogle Scholar
  24. 24.
    Kappe SH, et al. (2001) Exploring the transcriptome of the malaria sporozoite stage. Proc Natl Acad Sci USA 98:9895–9900PubMedCrossRefGoogle Scholar
  25. 25.
    Ben Mamoun C, et al. (2001) Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis. Mol Microbiol 39:26–36PubMedGoogle Scholar
  26. 26.
    Wodicka L, et al. (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol15:1359–1367PubMedCrossRefGoogle Scholar
  27. 27.
    Oshiro G, et al. (2002) Parallel identification of new genes in Saccharomyces cerevisiae. Genome Res 12:1210–1220PubMedCrossRefGoogle Scholar
  28. 28.
    Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247PubMedCrossRefGoogle Scholar
  29. 29.
    Washburn MP, et al. (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:3107–3112PubMedCrossRefGoogle Scholar
  30. 30.
    MacCoss MJ, et al. (2002) Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci USA 99:7900–7905PubMedCrossRefGoogle Scholar
  31. 31.
    Dessens JT, et al. (2003) SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Mol Microbiol 49:319–329PubMedCrossRefGoogle Scholar
  32. 32.
    MelloK, et al. (2002) Amultigene family that interacts with the amino terminus of plasmodium MSP-1 identified using the yeast two-hybrid system. Eukaryot Cell 1:915–925Google Scholar
  33. 33.
    Cui L, Fan Q, Li J (2002) The malaria parasite Plasmodium falciparum encodes members of the Puf RNA-binding protein family with conserved RNA binding activity. Nucl Acids Res 30:4607–4617PubMedCrossRefGoogle Scholar
  34. 34.
    Daly TM, Long CA, Bergman LW(2001) Interaction between two domains of the P. yoelii MSP-1 protein detected using the yeast two-hybrid system. Mol Biochem Parasitol 117:27–35PubMedCrossRefGoogle Scholar
  35. 35.
    Vlachou D, et al. (2001) Anopheles gambiae laminin interacts with the P25 surface protein of Plasmodium berghei ookinetes. Mol Biochem Parasitol 112:229–237PubMedCrossRefGoogle Scholar
  36. 36.
    Mamoun CB, et al. (1998) Identification and characterization of an unusual double serine/threonine protein phosphatase 2C in the malaria parasite Plasmodium falciparum. J Biol Chem 273:11241–11247PubMedCrossRefGoogle Scholar
  37. 37.
    Adams JH, et al. (2001) An expanding ebl family of Plasmodium falciparum. Trends Parasitol 17:297–299PubMedCrossRefGoogle Scholar
  38. 38.
    Preiser P, et al. (2004) Antibodies against MAEBL ligand domains M1 and M2 Inhibit sporozoite development in vitro. Infect Immun 72:3604–3608PubMedCrossRefGoogle Scholar
  39. 39.
    Blair PL, et al. (2002) Plasmodium falciparum MAEBL is a unique member of the ebl family. Mol Biochem Parasitol 122:35–44PubMedCrossRefGoogle Scholar
  40. 40.
    Kariu T, et al. (2002) MAEBL is essential for malarial sporozoite infection of the mosquito salivary gland. J Exp Med 195:1317–1323PubMedCrossRefGoogle Scholar
  41. 41.
    Ghai M, et al. (2002) Identification, expression, and functional characterization of MAEBL, a sporozoite and asexual blood stage chimeric erythrocyte-binding protein of Plasmodium falciparum. Mol Biochem Parasitol 123: 35–45PubMedCrossRefGoogle Scholar
  42. 42.
    Blair PL, et al. (2002) Transcripts of developmentally regulated Plasmodium falciparum genes quantified by real-time RT-PCR. Nucl Acids Res 30:2224–2231PubMedCrossRefGoogle Scholar
  43. 43.
    Gruner AC, et al. (2001) Expression of the erythrocyte-binding antigen 175 in sporozoites and in liver stages of Plasmodium falciparum. J Infect Dis 184:892–897PubMedGoogle Scholar
  44. 44.
    Sherman IW, Eda S, Winograd E (2003) Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect 5:897–909PubMedCrossRefGoogle Scholar
  45. 45.
    Craig A (2000) Malaria: a new gene family (clag) involved in adhesion. Parasitol Today 16:366–367; discussion 405PubMedCrossRefGoogle Scholar
  46. 46.
    Kaneko O, et al. (2001) The high molecular mass rhoptry protein, RhopH1, is encoded by members of the clag multigene family in Plasmodium falciparum and Plasmodium yoelii. Mol Biochem Parasitol 118:223–231PubMedCrossRefGoogle Scholar
  47. 47.
    Ling IT, et al. (2003) Characterisation of the rhoph2 gene of Plasmodium falciparum and Plasmodium yoelii. Mol Biochem Parasitol127:47–57PubMedCrossRefGoogle Scholar
  48. 48.
    Baldi DL, et al. (2000) RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium falciparum. EMBO J 19:2435–2443PubMedCrossRefGoogle Scholar
  49. 49.
    Ishino T, et al. (2004) Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol 2:E4PubMedCrossRefGoogle Scholar
  50. 50.
    Mota MM, et al. (2001) Migration of Plasmodiumsporozoites through cells before infection. Science 291:141–144PubMedCrossRefGoogle Scholar
  51. 51.
    Mota MM, Rodriguez A (2002) Invasion of mammalian host cells by Plasmodium sporozoites. Bioessays 24:149–156PubMedCrossRefGoogle Scholar
  52. 52.
    Mota MM, Hafalla JC, Rodriguez A (2002) Migration through host cells activates Plasmodium sporozoites for infection. Nat Med 8:1318–1322PubMedCrossRefGoogle Scholar
  53. 53.
    Matuschewski K. et al. (2002) Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system. EMBO J 21:1597–1606PubMedCrossRefGoogle Scholar
  54. 54.
    Kappe SH, Kaiser K, Matuschewski K (2003) The Plasmodium sporozoite journey: a rite of passage. Trends Parasitol 19:135–143PubMedCrossRefGoogle Scholar
  55. 55.
    Carrolo M, et al. (2003) Hepatocyte growth factor and its receptor are required for malaria infection. Nat Med 9:1363–1369PubMedCrossRefGoogle Scholar
  56. 56.
    Hollingdale MR, et al. (1984) Inhibition of entry of Plasmodium falciparum and P. vivax sporozoites into cultured cells; an in vitro assay of protective antibodies. J Immunol 132:909–913PubMedGoogle Scholar
  57. 57.
    Aikawa M, et al. (1984) Ultrastructure of in vitro cultured exoerythrocytic stage of Plasmodium berghei in a hepatoma cell line. Am J Trop Med Hyg 33:792–799PubMedGoogle Scholar
  58. 58.
    Hollingdale MR, et al. (1983) Entry of Plasmodium berghei sporozoites into cultured cells, and their transformation into trophozoites. Am J Trop Med Hyg 32:685–690PubMedGoogle Scholar
  59. 59.
    Hollingdale MR, Leland P, Schwartz AL (1983) In vitro cultivation of the exoerythrocytic stage of Plasmodium berghei in a hepatoma cell line. Am J Trop Med Hyg 32:682–684PubMedGoogle Scholar
  60. 60.
    Kaiser K, Camargo N, Kappe SH (2003) Transformation of sporozoites into early exoerythrocytic malaria parasites does not require host cells. J Exp Med 197:1045–1050PubMedCrossRefGoogle Scholar
  61. 61.
    Zhu JD, et al. (1990) Stage-specific ribosomal RNA expression switches during sporozoite invasion of hepatocytes. J Biol Chem 265:12740–12744PubMedGoogle Scholar
  62. 62.
    Gunderson JH, et al. (197) Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238:933–937Google Scholar
  63. 63.
    Kissinger JC, et al. (2002) The Plasmodium genome database. Nature 419:490–492PubMedCrossRefGoogle Scholar
  64. 64.
    Bahl A, et al. (2002) PlasmoDB: the Plasmodium genome resource. An integrated database providing tools for accessing, analyzing and mapping expression and sequence data (both finished and unfinished). Nucl Acids Res 30:87–90PubMedCrossRefGoogle Scholar
  65. 65.
    Bahl A, et al. (2003) PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucl Acids Res 31:212–215PubMedCrossRefGoogle Scholar
  66. 66.
    Puiu D, et al. (2004) CryptoDB: the Cryptosporidium genome resource. Nucl Acids Res 32:D329–D331PubMedCrossRefGoogle Scholar
  67. 67.
    Kissinger JC, et al. (2003) ToxoDB: accessing the Toxoplasma gondii genome. Nucl Acids Res 31:234–236PubMedCrossRefGoogle Scholar
  68. 68.
    Wiesner J, et al. (2003) New antimalarial drugs. Angew Chem Int Ed Engl 42:5274–5293PubMedCrossRefGoogle Scholar
  69. 69.
    Ellis JT, Morrison DA, Reichel MP (2003) Genomics and its impact on parasitology and the potential for development of new parasite control methods. DNA Cell Biol 22:395–403PubMedCrossRefGoogle Scholar
  70. 70.
    Ullu E, Tschudi C, Chakraborty T (2004) RNA interference in protozoan parasites. Cell Microbiol 6:509–519PubMedCrossRefGoogle Scholar
  71. 71.
    Aravind L, et al. (2003) Plasmodium biology: genomic gleanings. Cell 115:771–785PubMedCrossRefGoogle Scholar
  72. 72.
    Aguiar JC, et al. (2004) High-throughput generation of P. falciparumfunctional molecules by recombinationalcloning. Genome Res 14(10B):2076–2082PubMedCrossRefGoogle Scholar
  73. 73.
    Silvie O, et al (2004) A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodiumfalciparum sporozoites. J Biol Chem 279(10):9490–9496PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. L. Blair
    • 1
  • D. J. Carucci
    • 2
  1. 1.Biology DepartmentEarlham CollegeRichmondUSA
  2. 2.Foundation for the National Institutes of HealthBethesdaUSA

Personalised recommendations