Advertisement

Molecular Genetics of Mosquito Resistance to Malaria Parasites

  • K. D. Vernick
  • F. Oduol
  • B. P. Lazzaro
  • J. Glazebrook
  • J. Xu
  • M. Riehle
  • J. Li
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 295)

Abstract

Malaria parasites are transmitted by the bite of an infected mosquito, but even efficient vector species possess multiple mechanisms that together destroy most of the parasites present in an infection. Variation between individual mosquitoes has allowed genetic analysis and mapping of loci controlling several resistance traits, and the underlying mechanisms of mosquito response to infection are being described using genomic tools such as transcriptional and proteomic analysis. Malaria infection imposes fitness costs on the vector, but various forms of resistance inflict their own costs, likely leading to an evolutionary tradeoff between infection and resistance. Plasmodium development can be successfully completed only in compatible mosquito-parasite species combinations, and resistance also appears to have parasite specificity. Studies of Drosophila, where genetic variation in immunocompetence is pervasive in wild populations, offer a comparative context for understanding coevolution of the mosquito-malaria relationship. More broadly, plants also possess systems of pathogen resistance with features that are structurally conserved in animal innate immunity, including insects, and genomic datasets now permit useful comparisons of resistance models even between such diverse organisms.

Keywords

Malaria Parasite Anopheles Gambiae Encapsulation Response Sephadex Bead Plasmodium Cynomolgi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed AM, Baggott SL, Maingon R, Hurd H(2002) The costs ofmounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97:371–377CrossRefGoogle Scholar
  2. Ahmed AM, Maingon R, Romans P, Hurd H (2001) Effects of malaria infection on vitellogenesis in Anopheles gambiae during two gonotrophic cycles. Insect Mol Biol 10:347–356PubMedCrossRefGoogle Scholar
  3. Alavi Y, Arai M, Mendoza J, Tufet-Bayona M, Sinha R, Fowler K, Billker O, Franke-Fayard B, Janse CJ, Waters A, Sinden RE (2003) The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. Int J Parasitol 33:933–943PubMedGoogle Scholar
  4. Al-Mashhadani HM, Davidson G, Curtis CF (1980) Agenetic study of the susceptibility of Anopheles gambiae to Plasmodiumberghei. Trans R Soc Trop Med Hyg 74:585–594PubMedCrossRefGoogle Scholar
  5. Al-Mashhadani HM, Davisdson G (1976) A study of the susceptibility of A. gambiae species to malaria infection. Heredity 37:457Google Scholar
  6. Anderson RA, Knols BG, Koella JC (2000) Plasmodium falciparum sporozoites increase feeding-associated mortality of their mosquito hosts Anopheles gambiae s.l. Parasitology 120:329–333PubMedCrossRefGoogle Scholar
  7. Andersson K, Carballeira N, Magnusson KE, Persson C, Stendahl O, Wolf-Watz H, Fallman M (1996) YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol Microbiol 20:1057–1069PubMedGoogle Scholar
  8. Armitage SA, Thompson JJ, Rolff J, Siva-Jothy MT (2003) Examining costs of induced and constitutive immune investment in Tenebrio molitor. J Evol Biol 16:1038–1044PubMedCrossRefGoogle Scholar
  9. Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to theAvrRpt2-directed elimination of RIN4. Cell 112:369–377PubMedCrossRefGoogle Scholar
  10. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87:13–20PubMedCrossRefGoogle Scholar
  11. Balla-Jhagjhoorsingh SS, Verschoor EJ, de Groot N, Teeuwsen VJ, Bontrop RE, Heeney JL (2003) Specific nature of cellular immune responses elicited by chimpanzees against HIV-1. Hum Immunol 64:681–688PubMedCrossRefGoogle Scholar
  12. Begun DJ, Whitley P (2000) Adaptive evolution of relish, a Drosophila NFkappaB/ IkappaB protein. Genetics 154:1231–1238PubMedGoogle Scholar
  13. Benassi V, Frey F, Carton Y (1992) A new specific gene for wasp cellular immune resistance in Drosophila. Heredity 80: 347–352Google Scholar
  14. Billingsley PF, Sinden RE (1997) Determinants of malaria-mosquito specificity. Parasitol Today 13:297Google Scholar
  15. Bonnet S, Prevot G, Jacques JC, Boudin C, Bourgouin C (2001) Transcripts of the malaria vector Anopheles gambiae that are differentially regulated in the midgut upon exposure to invasive stages of Plasmodium falciparum. CellMicrobiol 3:449–458Google Scholar
  16. Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889–892PubMedCrossRefGoogle Scholar
  17. Brey P (1994) The impact of stress on immunity. Bull de l’Institut Pasteur 92:101–118Google Scholar
  18. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63PubMedCrossRefGoogle Scholar
  19. Carius HJ, Little TJ, Ebert D (2001) Genetic variation in a host-parasite association: potential for coevolution and frequency-dependent selection. Evolution 55:1136–1145PubMedGoogle Scholar
  20. Carton Y, Bouletreau M (1985) Encapsulation ability of Drosophila melanogaster: A genetic analysis. Dev Comp Immunol 9:211–219PubMedGoogle Scholar
  21. Carton Y, Frey F, Nappi A (1992) Genetic determinism of the cellular immune reaction in Drosophila melanogaster. Heredity 69:393–399PubMedGoogle Scholar
  22. Carwardine SL, Hurd H (1997) Effects of Plasmodium yoelii nigeriensis infection on Anopheles stephensi egg development and resorption. Med Vet Entomol 11:265–269PubMedGoogle Scholar
  23. Casper-Lindley C, Dahlbeck D, Clark ET, Staskawicz BJ (2002) Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proc Natl Acad Sci USA 99:8336–8341PubMedCrossRefGoogle Scholar
  24. Chamaillard M, Girardin SE, Viala J, Philpott DJ (2003) Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol 5:581–592PubMedCrossRefGoogle Scholar
  25. Chandok MR, Ytterberg AJ, van Wijk KJ, Klessig DF (2003) The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell 113:469–482PubMedCrossRefGoogle Scholar
  26. Chege GM, Beier JC(1990) Effect of Plasmodium falciparum on the survival ofnaturally infected afrotropical Anopheles (Diptera: Culicidae). J Med Entomol 27, 454–458PubMedGoogle Scholar
  27. Chen Z, Kloek AP, Boch J, Katagiri F, Kunkel BN (2000) The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells. Mol Plant Microbe Interact 13:1312–1321PubMedGoogle Scholar
  28. Cheong WH, Eyles DE, Warren M, Wharton RH (1963) The experimental infection of Plasmodium falciparum in a culicine mosquito Mansonia uniformis. Singapore Med J 4:183–184Google Scholar
  29. Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, et al. (2002) Immunity-related genes and gene families in Anopheles gambiae. Science 298:159–165PubMedCrossRefGoogle Scholar
  30. Chun J, McMaster J, Han Y, Schwartz A, Paskewitz SM (2000) Two-dimensional gel analysis of haemolymph proteins from Plasmodium-melanizing and-non-melanizing strains of Anopheles gambiae. Insect Mol Biol 9, 39–45PubMedCrossRefGoogle Scholar
  31. Chun J, Riehle M, Paskewitz SM(1995) Effect of mosquito age and reproductive status on melanization of sephadex beads in Plasmodium-refractory and-susceptible strains of Anopheles gambiae. J Invertebr Pathol 66:11–17PubMedGoogle Scholar
  32. Clark AG, Wang L (1997) Molecular population genetics of Drosophila immune system genes. Genetics 147:713–724PubMedGoogle Scholar
  33. Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK, Strominger JL, Baltimore D (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infectedcells from NK cells. Immunity 10:661–671PubMedCrossRefGoogle Scholar
  34. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891PubMedCrossRefGoogle Scholar
  35. Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller LH, Collins WE, Campbell CC, Gwadz RW (1986) Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234: 607–610PubMedGoogle Scholar
  36. Collmer A, Badel JL, Charkowski AO, Deng WL, Fouts DE, Ramos AR, Rehm AH, Anderson DM, Schneewind O, van Dijk K, Alfano JR (2000) Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci USA 97:8770–8777PubMedCrossRefGoogle Scholar
  37. Cornelis GR, Van Gijsegem F (2000) Assembly and function of type III secretory systems. Annu Rev Microbiol 54:735–774PubMedCrossRefGoogle Scholar
  38. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833PubMedCrossRefGoogle Scholar
  39. Date A, Satta Y, Takahata N, Chigusa SI (1998) Evolutionary history and mechanism of the Drosophila cecropin gene family. Immunogenetics 47:417–429PubMedCrossRefGoogle Scholar
  40. Davis IC, Girard M, Fultz PN (1998) Loss of CD4+ T cells in human immunodeficiency virus type 1-infected chimpanzees is associated with increased lymphocyte apoptosis. J Virol 72:4623–4632PubMedGoogle Scholar
  41. Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B Biol Sci 205:489–511PubMedCrossRefGoogle Scholar
  42. De Gregorio E, Spellman PT, Rubin GM, Lemaitre B (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. ProcNatl Acad Sci USA 98:12590–12595Google Scholar
  43. de Groot NG, Otting N, Doxiadis GG, Balla-Jhagjhoorsingh SS, Heeney JL, van Rood JJ, Gagneux P, Bontrop RE (2002) Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proc Natl Acad Sci USA 99:11748–11753PubMedCrossRefGoogle Scholar
  44. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, et al. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273:1856–1862PubMedGoogle Scholar
  45. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588PubMedGoogle Scholar
  46. Despres C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290PubMedCrossRefGoogle Scholar
  47. Dimopoulos G, Casavant TL, Chang S, Scheetz T, Roberts C, Donohue M, Schultz J, Benes V, Bork P, Ansorge W, et al. (2000) Anopheles gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proc Natl Acad Sci USA 97:6619–6624PubMedCrossRefGoogle Scholar
  48. Dimopoulos G, Christophides GK, Meister S, Schultz J, White KP, Barillas-Mury C, Kafatos FC (2002) Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc Natl Acad Sci USA 99:8814–8819PubMedCrossRefGoogle Scholar
  49. Dimopoulos G, Seeley D, Wolf A, Kafatos FC (1998) Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J 17:6115–6123PubMedCrossRefGoogle Scholar
  50. Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284PubMedCrossRefGoogle Scholar
  51. Fauvarque MO, Bergeret E, Chabert J, Dacheux D, Satre M, Attree I (2002) Role and activation of type III secretion systemgenes in Pseudomonas aeruginosa-induced Drosophila killing. Microb Pathog 32:287–295PubMedCrossRefGoogle Scholar
  52. Feldmann AM, Billingsley PF, Savelkoul E (1990) Bloodmeal digestion by strains of Anopheles stephensi liston (Diptera: Culicidae) of differing susceptibility to Plasmodium falciparum. Parasitology 101:193–200PubMedGoogle Scholar
  53. Feldmann AM, Ponnudurai T (1989) Selection of Anopheles stephensi for refractoriness and susceptibility to Plasmodium falciparum. Med Vet Entomol 3:41–52PubMedGoogle Scholar
  54. Feldmann AM, van Gemert GJ, van de Vegte-Bolmer MG, Jansen RC (1998) Genetics of refractoriness to Plasmodium falciparum in the mosquito Anopheles stephensi. Med Vet Entomol 12:302–312PubMedCrossRefGoogle Scholar
  55. Fellowes MDE, Kraaijeveld AR, Godfray HCJ (1998) Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster. Proc R Soc Lond B Biol Sci 265:1553–1558Google Scholar
  56. Ferdig MT, Taft AS, Smartt CT, Lowenberger CA, Li J, Zhang J, Christensen BM(2000) Aedes aegypti dopa decarboxylase: gene structure and regulation. InsectMol Biol 9:231–239Google Scholar
  57. Ferrari J, Muller CB, Kraaijeveld AR, Godfray HC (2001) Clonal variation and covariation in aphid resistance to parasitoids and a pathogen. Evolution Int J Org Evolution 55:1805–1814PubMedGoogle Scholar
  58. Flor HH (1955) Host-parasite interactions in flax-its genetics and other implications. Phytopathology 45:680–685Google Scholar
  59. Girardin SE, Sansonetti PJ, Philpott DJ (2002) Intracellular vs extracellular recognition of pathogens-common concepts inmammals and flies. Trends Microbiol 10:193–199PubMedCrossRefGoogle Scholar
  60. Gorman MJ, Andreeva OV, Paskewitz SM (2000) Molecular characterization of five serine protease genes cloned from Anopheles gambiae hemolymph. Insect Biochem Mol Biol 30:35–46PubMedGoogle Scholar
  61. Gorman MJ, Severson DW, Cornel AJ, Collins FH, Paskewitz SM (1997) Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, Anopheles gambiae. Genetics 146:965–971PubMedGoogle Scholar
  62. Gouagna LC, Mulder B, Noubissi E, Tchuinkam T, Verhave JP, Boudin C (1998) The early sporogonic cycle of Plasmodium falciparum in laboratory-infected Anopheles gambiae: an estimation of parasite efficacy. Trop Med Int Health 3:21–28PubMedCrossRefGoogle Scholar
  63. Han YS, Chun J, Schwartz A, Nelson S, Paskewitz SM (1999) Induction of mosquito hemolymph proteins in response to immune challenge and wounding. Dev Comp Immunol 23:553–562PubMedGoogle Scholar
  64. Han YS, Thompson J, Kafatos FC, Barillas-Mury C (2000) Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J 19:6030–6040PubMedCrossRefGoogle Scholar
  65. Hedengren M, Åsling B, Dushay MS, Ando I, Ekengren S, Wihlborg M, Hultmark D (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4:827–837PubMedCrossRefGoogle Scholar
  66. Hoffmann JA (2003) The immune response of Drosophila. Nature 426:33–38PubMedCrossRefGoogle Scholar
  67. Hogg JC, Carwardine S, Hurd H (1997) The effect of Plasmodium yoelii nigeriensis infection on ovarian protein accumulation by Anopheles stephensi. Parasitol Res 83:374–379PubMedCrossRefGoogle Scholar
  68. Hogg JC, Hurd H (1995a) Malaria-induced reduction of fecundity during the first gonotrophic cycle of Anopheles stephensi mosquitoes. Med Vet Entomol 9:176–180PubMedGoogle Scholar
  69. Hogg JC, Hurd H (1995b) Plasmodium yoelii nigeriensis: the effect of high and low intensity of infection upon the egg production and bloodmeal size of Anopheles stephensi during three gonotrophic cycles. Parasitology 111:555–562PubMedGoogle Scholar
  70. Hogg JC, Hurd H (1997) The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s. l. in north east Tanzania. Parasitology 114:325–331PubMedCrossRefGoogle Scholar
  71. Hopwood JA, Ahmed AM, Polwart A, Williams GT, Hurd H (2001) Malaria-induced apoptosis in mosquito ovaries: a mechanism to control vector egg production. J Exp Biol 204:2773–2780PubMedGoogle Scholar
  72. Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, Kang S, Ceradini D, Jin Z, Yazdanbakhsh K, et al. (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2:1240–1243PubMedCrossRefGoogle Scholar
  73. Hughes K, Sokolowski MB (1996) Natural selection in the laboratory for a change in resistance by Drosophila melanogaster to the parasitoid wasp Asobara tabida. J Insect Behav 9:477–491CrossRefGoogle Scholar
  74. Imler JL, Zheng L (2004) Biology of Toll receptors: lessons frominsects and mammals. J Leukoc Biol 75:18–26PubMedGoogle Scholar
  75. Inohara N, Nunez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3:371–382PubMedCrossRefGoogle Scholar
  76. Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart JM, Hoffmann JA, Hetru C (2001) A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci USA 98:15119–15124PubMedCrossRefGoogle Scholar
  77. Jiggins FM, Hurst GD (2003) The evolution of parasite recognition genes in the innate immune system: purifying selection on Drosophila melanogaster peptidoglycan recognition proteins. J Mol Evol 57:598–605PubMedCrossRefGoogle Scholar
  78. Johnson JK, Li J, Christensen BM(2001) Cloning and characterization of a dopachrome conversion enzyme from the yellow fever mosquito,Aedes aegypti. Insect Biochem Mol Biol 31:1125–1135PubMedGoogle Scholar
  79. Klein TA, Harrison BA, Andre RG, Whitmire RE, Inlao I (1982) Detrimental effects of Plasmodium cynomolgi infections on the longevity of Anopheles dirus. Mosquito News 42:265–271Google Scholar
  80. Klein TA, Harrison BA, Grove JS, Dixon SV, Andre RG (1986) Correlation of survival rates of Anopheles dirus A (Diptera: Culicidae) with different infection densities of Plasmodium cynomolgi. BullWorld Health Org 64:901–907Google Scholar
  81. Koella JC (1999) An evolutionary view of the interactions between anopheline mosquitoes and malaria parasites. Microbes Infect 1:303–308PubMedCrossRefGoogle Scholar
  82. Koella JC, Sorensen FL, Anderson RA (1998) The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc R Soc Lond B Biol Sci 265:763–768CrossRefGoogle Scholar
  83. Kraaijeveld AR, Godfray HCJ (1997) Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389:278–280PubMedGoogle Scholar
  84. Kraaijeveld AR, Limentani EC, Godfray HCJ (2001) Basis of the trade-off between parasitoid resistance and larval competetive ability in Drosophila melanogaster. Proc R Soc Lond B Biol Sci 268:259–261Google Scholar
  85. Kumar S, Christophides GK, Cantera R, Charles B, Han YS, Meister S, Dimopoulos G, Kafatos FC, Barillas-Mury C (2003) The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc Natl Acad Sci USA 100:14139–14144PubMedGoogle Scholar
  86. Lazzaro BP, Clark AG (2001) Evidence for recurrent paralogous gene conversion and exceptional allelic divergence in the Attacin genes of Drosophila melanogaster. Genetics 159:659–671PubMedGoogle Scholar
  87. Lazzaro BP, Clark AG (2003) Molecular population genetics of genes encoding inducible antibacterial peptides in Drosophila melanogaster. Mol Biol Evol 20:914–923PubMedGoogle Scholar
  88. Lazzaro BP, Sceurman BK, Clark AG (2004) Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 303:1873–1876PubMedCrossRefGoogle Scholar
  89. Lehmann P (2002) Structure and evolution of plant disease resistance genes. J Appl Genet 43:403–414PubMedGoogle Scholar
  90. Li X, Webb BA(1994) Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. J Virol 68:7482–7489PubMedGoogle Scholar
  91. Lindmark H, Johansson KC, Stoven S, Hultmark D, Engstrom Y, KS (2001) Enteric bacteria counteract lipopolysaccharide induction of antimicrobial peptide genes. J Immunol 167:6920–6923PubMedGoogle Scholar
  92. Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998) The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA 95:5700–5705PubMedCrossRefGoogle Scholar
  93. Luckhart S, Crampton AL, Zamora R, Lieber MJ, Dos Santos PC, Peterson TM, Emmith N, Lim J, Wink DA, Vodovotz Y (2003) Mammalian transforming growth factor beta1 activated after ingestion by Anopheles stephensi modulatesmosquito immunity. Infect Immun 71:3000–3009PubMedCrossRefGoogle Scholar
  94. Lyimo EO, Koella JC (1992) Relationship between body size of adult Anopheles gambiae s.l. and infection with the malaria parasite Plasmodium falciparum. Parasitology 104:233–237PubMedCrossRefGoogle Scholar
  95. Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–389PubMedCrossRefGoogle Scholar
  96. Mackey D, Holt BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754PubMedCrossRefGoogle Scholar
  97. McKean KA, Nunney L (2001) Increased sexual activity reduces maleimmune function in Drosophila melanogaster. Proc Natl Acad Sci USA 98:7904–7909PubMedCrossRefGoogle Scholar
  98. Medley GF, Sinden RE, Fleck S, Billingsley PF, Tirawanchai N, Rodriguez MH (1993) Heterogeneity in patterns of malarial oocyst infections in the mosquito vector. Parasitology 106:441–449PubMedGoogle Scholar
  99. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834PubMedCrossRefGoogle Scholar
  100. Miller LH, Mason SJ, Clyde DF, McGinniss MH (1976) The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med 295:302–304PubMedCrossRefGoogle Scholar
  101. Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290:1166–1168PubMedCrossRefGoogle Scholar
  102. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944PubMedCrossRefGoogle Scholar
  103. Murphy PM (1993) Molecular mimicry and the generation of host defense protein diversity. Cell 72:823–826PubMedCrossRefGoogle Scholar
  104. Nappi AJ, Vass E, Frey F, Carton Y (1995) Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur J Cell Biol 68:450–456PubMedGoogle Scholar
  105. Niare O, Markianos K, Volz J, Oduol F, Toure A, Bagayoko M, Sangare D, Traore SF, Wang R, Blass C, Dolo G, Bouare M, Kafatos FC, Kruglyak L, Toure YT, Vernick KD (2002) Genetic loci affecting resistance to human malaria parasites in a West African mosquito vector population. Science 298:213–216PubMedCrossRefGoogle Scholar
  106. Novembre FJ, Saucier M, Anderson DC, Klumpp SA, O’Neil SP, Brown CR 2nd, Hart CE, Guenthner PC, Swenson RB, McClure HM (1997) Development of AIDS in a chimpanzee infected with human immunodeficiency virus type 1. J Virol 71:4086–4091PubMedGoogle Scholar
  107. Ocana-Morgner C, Mota MM, Rodriguez A (2003) Malaria blood stage suppression of liver stage immunity by dendritic cells. J Exp Med 197:143–151PubMedCrossRefGoogle Scholar
  108. Oduol F, Xu J, Niare O, Natarajan R, Vernick KD (2000) Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci USA 97:11397–11402PubMedCrossRefGoogle Scholar
  109. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920PubMedCrossRefGoogle Scholar
  110. Orr HA, Irving S (1997) The genetics of adaptation: The genetic basis of resistance to wasp parasitism in Drosophila melanogaster. Evolution 51:1877–1885Google Scholar
  111. Osta MA, Christophides GK, Kafatos FC (2004) Effects ofmosquito genes on Plasmodium development. Science 303:2030–2032PubMedCrossRefGoogle Scholar
  112. Paskewitz S, Riehle MA (1994) Response of Plasmodium refractory and susceptible strains of Anopheles gambiae to inoculated Sephadex beads. Dev Comp Immunol 18:369–375PubMedGoogle Scholar
  113. Paskewitz SM, Brown MR, Lea AO, Collins FH (1988) Ultrastructure of the encapsulation of Plasmodium cynomolgi (B strain) on the midgut of a refractory strain of Anopheles gambiae. J Parasitol 74:432–439PubMedGoogle Scholar
  114. Paskewitz SM, Reese-Stardy S, Gorman MJ (1999) An easter-like serine protease from Anopheles gambiae exhibits changes in transcript abundance following immune challenge. Insect Mol Biol 8:329–337PubMedCrossRefGoogle Scholar
  115. Ploegh HL (1998) Viral strategies of immune evasion. Science 280:248–253PubMedCrossRefGoogle Scholar
  116. Ramos-Onsins S, Aguadè M (1998) Molecular evolution of the Cecropin multigene family in Drosophila: functional genes vs. pseudogenes. Genetics 150:157–171PubMedGoogle Scholar
  117. Reddy JT, Locke M (1990) The size limited penetration of gold particles through insect basal laminae. J Insect Physiol 36:397–407CrossRefGoogle Scholar
  118. Richman AM, Dimopoulos G, Seeley D, Kafatos FC (1997) Plasmodium activates the innateimmune response of Anopheles gambiae mosquitoes. EMBOJ 16:6114–6119Google Scholar
  119. Robert V, Verhave JP, Carnevale P (1990) Plasmodium falciparum infection does not increase the precocious mortality rate of Anopheles gambiae. Trans R Soc Trop Med Hyg 84:346–347PubMedCrossRefGoogle Scholar
  120. Rolff J, Siva-Jothy MT (2002) Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc Natl Acad Sci USA 99:9916–9918PubMedCrossRefGoogle Scholar
  121. Rosqvist R, Forsberg A, Wolf-Watz H (1991) Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun 59:4562–4569PubMedGoogle Scholar
  122. Rossignol PA, Ribeiro JM, Spielman A (1984) Increased intradermal probing time in sporozoite-infected mosquitoes. Am J Trop Med Hyg 33:17–20PubMedGoogle Scholar
  123. Rossignol PA, Ribeiro JM, Spielman A (1986) Increased biting rate and reduced fertility in sporozoite-infected mosquitoes. Am J Trop Med Hyg 35:277–279PubMedGoogle Scholar
  124. Schlenke TA, Begun DJ (2003) Natural selection drives Drosophila immune system evolution. Genetics 164:1471–1480PubMedGoogle Scholar
  125. Schwartz A, Koella JC (2002) Melanization of plasmodium falciparum and C-25 sephadex beads by field-caught Anopheles gambiae (Diptera: Culicidae) from southern Tanzania. J Med Entomol 39:84–88PubMedGoogle Scholar
  126. Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301:1230–1233PubMedCrossRefGoogle Scholar
  127. Sinden RE (1997) Infection of Mosquitoes with Rodent Malaria. In: Crampton JM, Beard CB, Louis C (eds) The molecular biology of insect disease vectors. Chapman and Hall, London, pp 67–91Google Scholar
  128. Sluiters JF, Visser PE, van der Kaay HJ (1986) The establishment of Plasmodium berghei in mosquitoes of a refractory and a susceptible line of Anopheles atroparvus. Z Parasitenkd 72:313–322PubMedCrossRefGoogle Scholar
  129. Somboon P, Prapanthadara L, Suwonkerd W (1999) Selection of Anopheles dirus for refractoriness and susceptibility to Plasmodium yoelii nigeriensis. Med Vet Entomol 13:355PubMedCrossRefGoogle Scholar
  130. Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–671PubMedGoogle Scholar
  131. Stöven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engstrom Y, Maniatis T, Hultmark D (2003) Caspase-mediated processing of the Drosophila NFkappaB factor Relish. Proc Natl Acad Sci USA 100:5991–5996PubMedGoogle Scholar
  132. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853PubMedCrossRefGoogle Scholar
  133. Swiderski MR, Innes RW(2001) The Arabidopsis PBS1 resistance gene encodes amember of a novel protein kinase subfamily. Plant J 26:101–112PubMedCrossRefGoogle Scholar
  134. Tahar R, Boudin C, Thiery I, Bourgouin C (2002) Immune response of Anopheles gambiae to the early sporogonic stages of the human malaria parasite Plasmodium falciparum. EMBO J 21:6673–6680PubMedCrossRefGoogle Scholar
  135. Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330PubMedCrossRefGoogle Scholar
  136. Tao Y, Yuan F, Leister RT, Ausubel FM, Katagiri F (2000) Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant Cell 12:2541–2554PubMedCrossRefGoogle Scholar
  137. Thomasova D, Ton LQ, Copley RR, Zdobnov EM, Wang X, Hong YS, Sim C, Bork P, Kafatos FC, Collins FH (2002) Comparative genomic analysis in the region of a major Plasmodium-refractoriness locus of Anopheles gambiae. Proc Natl Acad Sci USA 99:8179–8184PubMedCrossRefGoogle Scholar
  138. Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J (2003) Fitness costs of R-genemediated resistance in Arabidopsis thaliana. Nature 423:74–77PubMedCrossRefGoogle Scholar
  139. Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522PubMedCrossRefGoogle Scholar
  140. Van der Biezen EA, Jones JD (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23:454–456PubMedGoogle Scholar
  141. van der Kaay HJ, Boorsma L (1977) A susceptible and refractive strain of Anopheles atroparvus van Thiel to infection with Plasmodium berghei berghei. Acta Leiden 45:13–19PubMedGoogle Scholar
  142. Vaughan JA, Hensley L, Beier JC (1994) Sporogonic development of Plasmodiumyoelii in five anopheline species. J Parasitol 80:674–681PubMedGoogle Scholar
  143. Vernick KD (1998) Mechanisms of immunity and refractoriness in insect vectors of eukaryotic parasites. In Brey PT, Hultmark D (eds) Molecular mechanisms of immune response in insects. Chapman and Hall, London, pp 261–309Google Scholar
  144. Vernick KD, Collins FH (1989) Association of a Plasmodium-refractory phenotype with an esterase locus in Anopheles gambiae. Am J Trop Med Hyg 40:593–597PubMedGoogle Scholar
  145. Vernick KD, Collins FH, Gwadz RW (1989) A general system of resistance to malaria infection in Anopheles gambiae controlled by two main genetic loci. Am J Trop Med Hyg 40:585–592PubMedGoogle Scholar
  146. Vernick KD, Fujioka H, Seeley DC, Tandler B, Aikawa M, Miller LH (1995) Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito, Anopheles gambiae. Exp Parasitol 80:583–595PubMedCrossRefGoogle Scholar
  147. Vernick KD, Waters AP (2004) Genomics and malaria control. New Engl J Med 351:1901–1904PubMedCrossRefGoogle Scholar
  148. Warren RF, Merritt PM, Holub E, Innes RW(1999) Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics 152:401–412PubMedGoogle Scholar
  149. Weathersby AB, McCall JW (1968) The development of Plasmodium gallinaceum Brumpt in the hemocoels of refractory Culex pipiens pipiens Linn. and susceptible Aedes aegypti (Linn.). J Parasitol 54:1017–1022PubMedGoogle Scholar
  150. Weathersby AB, McCroddan DM (1982) The effects of parabiotic twinning of susceptible and refractory mosquitoes on the development of Plasmodium gallinaceum. J Parasitol 68:1081–1084PubMedGoogle Scholar
  151. Wekesa JW, Copeland RS, Mwangi RW (1992) Effect of Plasmodium falciparum on blood feeding behavior of naturally infected Anopheles mosquitoes in western Kenya. Am J Trop Med Hyg 47: 484–488PubMedGoogle Scholar
  152. Williamson KB, Zain M (1937a) A presumptive culicine host of the human malaria parasites. Transact R Soc Trop Med Hygiene 31:109–114Google Scholar
  153. Williamson KB, Zain M (1937b) A presumptive culicine host of the human malaria parasites. Nature 139:714Google Scholar
  154. Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96:6523–6528PubMedGoogle Scholar
  155. Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653PubMedGoogle Scholar
  156. Zheng L, Cornel AJ, Wang R, Erfle H, Voss H, Ansorge W, Kafatos FC, Collins FH (1997) Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science 276:425–428PubMedCrossRefGoogle Scholar
  157. Zheng L, Wang S, Romans P, Zhao H, Luna C, Benedict MQ (2003) Quantitative trait loci in Anopheles gambiae controlling the encapsulation response against Plasmodium cynomolgi Ceylon. BMC Genet 4:16PubMedCrossRefGoogle Scholar
  158. Zimmerman PA, Woolley I, Masinde GL, Miller SM, McNamara DT, Hazlett F, Mgone CS, Alpers MP, Genton B, Boatin BA, Kazura JW (1999) Emergence of FY*A(null) in a Plasmodium vivax-endemic region of Papua New Guinea. Proc Natl Acad Sci USA 96:13973–13977PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • K. D. Vernick
    • 1
  • F. Oduol
    • 1
  • B. P. Lazzaro
    • 2
  • J. Glazebrook
    • 3
  • J. Xu
    • 1
  • M. Riehle
    • 2
  • J. Li
    • 3
  1. 1.Department of Microbiology, Center for Microbial and Plant GenomicsUniversity of MinnesotaSt. PaulUSA
  2. 2.Department of EntomologyCornell UniversityIthacaUSA
  3. 3.Department of Plant Biology, Center for Microbial and Plant GenomicsUniversity of MinnesotaSt. PaulUSA

Personalised recommendations