Advertisement

Plasmodium Ookinete Invasion of the Mosquito Midgut

  • J. M. Vinetz
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 295)

Abstract

The Plasmodium ookinete is the developmental stage of the malaria parasite that invades the mosquito midgut. The ookinete faces two physical barriers in the midgut which it must traverse to become an oocyst: the chitin- and protein-containing peritrophic matrix; and the midgut epithelial cell. This chapter will consider basic aspects of ookinete biology, molecules known to be involved in midgut invasion, and cellular processes of the ookinete that facilitate parasite invasion. Detailed knowledge of these mechanisms may be exploitable in the future towards developing novel strategies of blocking malaria transmission.

Keywords

Peritrophic Membrane Parasite Invasion Mosquito Midgut Peritrophic Matrix Midgut Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham EG, Jacobs-Lorena M (2004) Mosquito midgut barriers to malaria parasite development. Insect Biochem Mol Biol 34:667–671PubMedGoogle Scholar
  2. Alavi Y, Arai M, Mendoza J, Tufet-Bayona M, Sinha R, Fowler K, Billker O, Franke-Fayard B, Janse CJ, Waters A, Sinden RE (2003) The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. Int J Parasitol 33:933–943PubMedGoogle Scholar
  3. Berner R, Rudin W, Hecker H (1983) Peritrophic membranes and protease activity in the midgut of the malaria mosquito, Anopheles stephensi (Liston) (Insecta: Diptera) under normal and experimental conditions. J Ultrastruct Res 83:195–204PubMedCrossRefGoogle Scholar
  4. Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, Rogers M, Sinden RE, Morris HR (1998) Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392:289–292PubMedGoogle Scholar
  5. Billker O, Miller AJ, Sinden RE (2000) Determination of mosquito bloodmeal pH in situ by ion-selective microelectrode measurement: implications for the regulation of malarial gametogenesis. Parasitology 120:547–551PubMedCrossRefGoogle Scholar
  6. Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:E5PubMedCrossRefGoogle Scholar
  7. Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quackenbush J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cunningham DA, Preiser PR, Bergman LW, Vaidya AB, van Lin L H, Janse CJ, Waters AP, Smith HO, White OR, Salzberg SL, Venter JC, Fraser CM, Hoffman SL, Gardner MJ, Carucci DJ (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419:512–519PubMedCrossRefGoogle Scholar
  8. Carrolo M, Giordano S, Cabrita-Santos L, Corso S, Vigario AM, Silva S, Leiriao P, Carapau D, Armas-Portela R, Comoglio PM, Rodriguez A, Mota MM (2003) Hepatocyte growth factor and its receptor are required for malaria infection. Nat Med 9:1363–1369PubMedCrossRefGoogle Scholar
  9. Carter R, Chen DH (1976) Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature 263:57–60PubMedCrossRefGoogle Scholar
  10. Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller LH, Collins WE, Campbell CC, Gwadz RW (1986) Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234:607–610PubMedGoogle Scholar
  11. de Lara Capurro M, Coleman J, Beerntsen BT, Myles KM, Olson KE, Rocha E, Krettli AU, James AA (2000) Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. Am J Trop Med Hyg 62:427–433PubMedGoogle Scholar
  12. Dessens JT, Beetsma AL, Dimopoulos G, Wengelnik K, Crisanti A, Kafatos FC, Sinden RE (1999) CTRP is essential for mosquito infection by malaria ookinetes. EMBO J 18:6221–6227PubMedCrossRefGoogle Scholar
  13. Dessens JT, Mendoza J, Claudianos C, Vinetz JM, Khater E, Hassard S, Ranawaka GR, Sinden RE (2001) Knockout of the rodent malaria parasite chitinase pbCHT1 reduces infectivity to mosquitoes. Infect Immun 69:4041–4047PubMedCrossRefGoogle Scholar
  14. Dimopoulos G (2003) Insect immunity and its implication in mosquito-malaria interactions. Cell Microbiol 5:3–14PubMedCrossRefGoogle Scholar
  15. Dubremetz JF, Garcia-Reguet N, Conseil V, Fourmaux MN (1998) Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol 28:1007–1013PubMedGoogle Scholar
  16. Ferguson HM, Mackinnon MJ, Chan BH, Read AF (2003) Mosquito mortality and the evolution of malaria virulence. Evolution Int J Org Evol 57:2792–2804Google Scholar
  17. Ferguson HM, Read AF (2002) Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol 18:256–261PubMedGoogle Scholar
  18. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520–526PubMedCrossRefGoogle Scholar
  19. Foo A, Carter R, Lambros C, Graves PM, Quakyi IA, Targett GA, Ponnudurai T, Lewis G (1991) Conserved and variant epitopes of target antigens of transmission-blocking antibodies among isolates of Plasmodium falciparum from Malaysia. Am J Trop Med Hyg 44:623–631PubMedGoogle Scholar
  20. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedGoogle Scholar
  21. Gass RF, Yeates RA (1979) In vitro damage of cultured ookinetes of Plasmodium gallinaceum by digestive proteinases from susceptible Aedes aegypti. Acta Tropica 36:243–252PubMedGoogle Scholar
  22. Ghosh A, Edwards MJ, Jacobs-Lorena M (2000) The journey of the malaria parasite in the mosquito: hopes for the new century. Parasitol Today 16:196–201PubMedCrossRefGoogle Scholar
  23. Ghosh AK, Moreira LA, Jacobs-Lorena M (2002) Plasmodium-mosquito interactions, phage display libraries and transgenic mosquitoes impaired for malaria transmission. Insect Biochem Mol Biol 32:1325–1331PubMedGoogle Scholar
  24. Ghosh AK, Ribolla PE, Jacobs-Lorena M (2001) Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci USA 98:13278–13281PubMedGoogle Scholar
  25. Graves PM, Carter R, Burkot TR, Quakyi IA, Kumar N (1988) Antibodies to Plasmodium falciparum gamete surface antigens in Papua New Guinea sera. Parasite Immunol 10:209–218PubMedGoogle Scholar
  26. Gwadz RW (1976) Successful immunization against the sexual stages of Plasmodium gallinaceum. Science 193:1150–1151PubMedGoogle Scholar
  27. Han YS, Thompson J, Kafatos FC, Barillas-Mury C (2000) Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes.EMBO J 19:6030–6040PubMedCrossRefGoogle Scholar
  28. Hogg JC, Hurd H (1997) The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s. l. in north east Tanzania. Parasitology 114:325–331PubMedCrossRefGoogle Scholar
  29. Huber M, Cabib E, Miller LH (1991) Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc Natl Acad Sci USA 88:2807–2810PubMedGoogle Scholar
  30. Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417:452–455PubMedCrossRefGoogle Scholar
  31. James AA, Beerntsen BT, Capurro Mde L, Coates CJ, Coleman J, Jasinskiene N, Krettli AU (1999) Controlling malaria transmission with genetically-engineered, Plasmodium-resistant mosquitoes: milestones in a model system. Parassitologia 41:461–471PubMedGoogle Scholar
  32. Kadota K, Ishino T, Matsuyama T, Chinzei Y, Yuda M (2004) Essential role of membrane-attack protein in malarial transmission to mosquito host. Proc Natl Acad Sci USA 101:16310–16315PubMedGoogle Scholar
  33. Kaslow DC (1993) Transmission-blocking immunity againstmalaria and other vectorborne diseases. Curr Opin Immunol 5:557–565PubMedCrossRefGoogle Scholar
  34. Kaslow DC, Quakyi IA, Syin C, Raum MG, et al. (1988) A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature 333:74–76PubMedCrossRefGoogle Scholar
  35. Kaushal DC, Carter R, Howard RJ, McAuliffe FM (1983a) Characterization of antigens on mosquito midgut stages of Plasmodium gallinaceum. I. Zygote surface antigens. Mol Biochem Parasitol 8:53–69PubMedCrossRefGoogle Scholar
  36. Kaushal DC, Carter R, Rener J, Grotendorst CA, Miller LH, Howard RJ (1983b) Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes. J Immunol 131:2557–2562PubMedGoogle Scholar
  37. Kumar S, Christophides GK, Cantera R, Charles B, Han YS, Meister S, Dimopoulos G, Kafatos FC, Barillas-Mury C (2003) The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc Natl Acad Sci USA 100:14139–14144PubMedGoogle Scholar
  38. Kumar S, Gupta L, Han YS, Barillas-Mury C (2004) Inducible peroxidases mediate nitration of anopheles midgut cells undergoing apoptosis in response to Plasmodium invasion. J Biol Chem 279:53475–53482PubMedGoogle Scholar
  39. Lal AA, Patterson PS, Sacci JB, Vaughan JA, Paul C, Collins WE, Wirtz RA, Azad AF (2001) Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship. Proc Natl Acad Sci USA 98:5228–5233PubMedCrossRefGoogle Scholar
  40. Lal AA, Schriefer ME, Sacci JB, Goldman IF, Louis-Wileman V, Collins WE, Azad AF (1994) Inhibition of malaria parasite development in mosquitoes by anti-mosquito-midgut antibodies. Infect Immun 62:316–318PubMedGoogle Scholar
  41. Langer RC, Hayward RE, Tsuboi T, Tachibana M, Torii M, Vinetz JM (2000) Micronemal transport of Plasmodium ookinete chitinases to the electron-dense area of the apical complex for extracellular secretion. Infect Immun 68:6461–6465PubMedCrossRefGoogle Scholar
  42. Langer RC, Li F, Popov V, Kurosky A, Vinetz JM (2002a) Monoclonal antibody against the Plasmodium falciparum chitinase, PfCHT1, recognizes a malaria transmission-blocking epitope in Plasmodium gallinaceum ookinetes unrelated to the chitinase PgCHT1. Infect Immun 70:1581–1590PubMedGoogle Scholar
  43. Langer RC, Li F, Vinetz JM (2002b) Identification of novel Plasmodium gallinaceum zygote-and ookinete-expressed proteins as targets for blocking malaria transmission. Infect Immun 70:102–106PubMedGoogle Scholar
  44. Langer RC, Vinetz JM (2001) Plasmodium ookinete-secreted chitinase and parasite penetration of the mosquito peritrophic matrix. Trends Parasitol 17:269–272PubMedCrossRefGoogle Scholar
  45. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, De La Vega P, Holder AA, Batalov S, Carucci DJ, Winzeler EA (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–1508PubMedGoogle Scholar
  46. Li F, Templeton T, Popov V, Comer J, Tsuboi T, Torii M, Vinetz J (2004) Plasmodium ookinete-secreted proteins secreted through a common micronemal pathway are targets of blocking malaria transmission. J Biol Chem 279:26635–26644PubMedGoogle Scholar
  47. Limviroj W, Yano K, Yuda M, Ando K, Chinzei Y (2002) Immuno-electronmicroscopic observation of Plasmodium berghei CTRP localization in the midgut of the vector mosquito Anopheles stephensi. J Parasitol 88:664–672PubMedGoogle Scholar
  48. Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998) The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA 95:5700–5705PubMedCrossRefGoogle Scholar
  49. Moreira LA, Ito J, Ghosh A, Devenport M, Zieler H, Abraham EG, Crisanti A, Nolan T, Catteruccia F, Jacobs-Lorena M (2002) Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem 277:40839–40843PubMedGoogle Scholar
  50. Ngo HM, Hoppe HC, Joiner KA (2000) Differential sorting and post-secretory targeting of proteins in parasitic invasion. Trends Cell Biol 10:67–72PubMedGoogle Scholar
  51. Niare O, Markianos K, Volz J, Oduol F, Toure A, Bagayoko M, Sangare D, Traore SF, Wang R, Blass C, Dolo G, Bouare M, Kafatos FC, Kruglyak L, Toure YT, Vernick KD (2002) Genetic loci affecting resistance to human malaria parasites in a West African mosquito vector population. Science 298:213–216PubMedCrossRefGoogle Scholar
  52. Perrone JB, Spielman A (1988) Time and site of assembly of the peritrophic membrane of the mosquito Aedes aegypti. Cell Tissue Res 252:473–478PubMedCrossRefGoogle Scholar
  53. Quakyi IA, Carter R, Rener J, Kumar N, Good MF, Miller LH (1987) The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmission-blocking antibodies. J Immunol 139:4213–4217PubMedGoogle Scholar
  54. Ramasamy MS, Kulasekera R, Wanniarachchi IC, Srikrishnaraj KA, Ramasamy R (1997a) Interactions of human malaria parasites, Plasmodium vivax and P. falciparum, with the midgut of Anopheles mosquitoes. Med Vet Entomol 11:290–296PubMedGoogle Scholar
  55. Ramasamy R, Wanniarachchi IC, Srikrishnaraj KA, Ramasamy MS (1997b) Mosquito midgut glycoproteins and recognition sites for malaria parasites. Biochim Biophys Acta 1361:114–122PubMedGoogle Scholar
  56. Ranawaka GR, Alejo-Blanco AR, Sinden RE (1994a) Characterization of the effector mechanisms of a transmission-blocking antibody upon differentiation of Plasmodium berghei gametocytes into ookinetes in vitro. Parasitology 109:11–17PubMedGoogle Scholar
  57. Ranawaka GRR, Fleck SL, Blanco AR, Sinden RE(1994b) Characterization of the modes of action of anti-Pbs21 malaria transmission-blocking immunity: ookinete to oocyst differentiation in vivo. Parasitology 109:403–411PubMedGoogle Scholar
  58. Read D, Lensen AH, Begarnie S, Haley S, Raza A, Carter R (1994) Transmission blocking antibodies against multiple, non-variant target epitopes of the Plasmodium falciparum gamete surface antigen Pfs230 are all complement-fixing. Parasite Immunol 16:511–519PubMedGoogle Scholar
  59. Rener J, Graves PM, Carter R, Williams JL, Burkot TR (1983) Target antigens of transmission-blocking immunity on gametes of Plasmodium falciparum. J Exp Med 158:976–981PubMedCrossRefGoogle Scholar
  60. Sam-Yellowe TY, Florens L, Wang T, Raine JD, Carucci DJ, Sinden R, Yates Jr 3rd (2004) Proteome analysis of rhoptry-enriched fractions isolated from Plasmodium merozoites. J Proteome Res 3:995–1001PubMedCrossRefGoogle Scholar
  61. Shahabuddin M (2002) Do Plasmodium ookinetes invade a specific cell type in the mosquito midgut. Trends Parasitol 18:157–161PubMedCrossRefGoogle Scholar
  62. Shahabuddin M, Criscio M, Kaslow D (1995) Unique specificity of in vitro inhibition of mosquito midgut trypsin-like activity correlates with in vivo inhibition of malaria parasite infectivity. Exp Parasitol 80:212–219PubMedCrossRefGoogle Scholar
  63. Shahabuddin M, Lemos F, Kaslow D, Jacobs-Lorena M (1996) Antibody-mediated inhibition of Aedes aegypti midgut trypsins blocks sporogonic development of Plasmodium gallinaceum. Infect Immun 64:739–743PubMedGoogle Scholar
  64. Shahabuddin M, Pimenta PF (1998) Plasmodium gallinaceum preferentially invades vesicular ATPase-expressing cells in Aedes aegypti midgut. Proc Natl Acad Sci USA 95:3385–3389PubMedCrossRefGoogle Scholar
  65. Shahabuddin M, Toyoshima T, Aikawa M, Kaslow DC (1993) Transmission-blocking activity of a chitinase inhibitor and activation of malarial parasite chitinase by mosquito protease. Proc Natl Acad Sci USA 90:4266–4270PubMedGoogle Scholar
  66. Shen Z, Jacobs-Lorena M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J Biol Chem 273:17665–17670PubMedGoogle Scholar
  67. Sieber KP, Huber M, Kaslow D, Banks SM, Torii M, Aikawa M, Miller LH (1991) The peritrophic membrane as a barrier: its penetration by Plasmodium gallinaceum and the effect of a monoclonal antibody to ookinetes. Exp Parasitol 72:145–156PubMedCrossRefGoogle Scholar
  68. Sinden RE, Alav iY, Raine JD (2004) Mosquito-malaria interactions: a reappraisal of the concepts of susceptibility and refractoriness. Insect Biochem Mol Biol 34:625–629PubMedGoogle Scholar
  69. Sinden RE, Billingsley PF (2001) Plasmodium invasion of mosquito cells: hawk or dove? Trends Parasitol 17:209–211PubMedCrossRefGoogle Scholar
  70. Sinden RE, Canning EU (1972) The ultrastructure of Plasmodium berghei ookinetes in the midgut wall of Anopheles stephensi. Trans R Soc Trop Med Hyg 66:6PubMedCrossRefGoogle Scholar
  71. Suwanabun N, Sattabongkot J, Tsuboi T, Torii M, Maneechai N, Rachapaew N, Yimamnuaychok N, Punkitchar V, Coleman RE (2001) Development of a method for the in vitro production of Plasmodium vivax ookinetes. J Parasitol 87:928–930PubMedGoogle Scholar
  72. Tellam R, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101PubMedGoogle Scholar
  73. Templeton TJ, Kaslow DC, Fidock DA (2000) Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Mol Microbiol 36:1–9PubMedCrossRefGoogle Scholar
  74. Tomas AM, Margos G, Dimopoulos G, van Lin LH, de Koning-Ward TF, Sinha R, Lupetti P, Beetsma AL, Rodriguez MC, Karras M, Hager A, Mendoza J, Butcher GA, Kafatos F, Janse CJ, Waters AP, Sinden RE (2001) P25 and P28 proteins of the malaria ookinete surface havemultiple and partially redundant functions. EMBO J 20:3975–3983PubMedCrossRefGoogle Scholar
  75. Torii M, Nakamura K, Sieber KP, Miller LH, Aikawa M (1992) Penetration of the mosquito (Aedes aegypti) midgut wall by the ookinetes of Plasmodium gallinaceum. J Protozool 39:449–454PubMedGoogle Scholar
  76. Trottein F, Triglia T, Cowman AF (1995) Molecular cloning of a gene from Plasmodium falciparum that codes for a protein sharing motifs found in adhesive molecules from mammals and plasmodia. Mol Biochem Parasitol 74:129–141PubMedCrossRefGoogle Scholar
  77. Trueman HE, Raine JD, Florens L, Dessens JT, Mendoza J, Johnson J, Waller CC, Delrieu I, Holders AA, Langhorne J, Carucci DJ, Yates JR 3rd, Sinden RE (2004) Functional characterization of an LCCL-lectin domain containing protein family in Plasmodium berghei. J Parasitol 90:1062–1071PubMedGoogle Scholar
  78. Tsai YL, Hayward RE, Langer RC, Fidock DA, Vinetz JM (2001) Disruption of Plasmodium falciparum chitinase markedly impairs parasite invasion of mosquito midgut. Infect Immun 69:4048–4054PubMedCrossRefGoogle Scholar
  79. Tsuboi T, Kanek O, Eitoku C, Suwanabu N, Sattabongkot J, Vinetz JM, Torii M (2003) Gene structure and ookinete expression of the chitinase genes of Plasmodium vivax and Plasmodium yoelii. Mol Biochem Parasitol 130:51–54PubMedCrossRefGoogle Scholar
  80. van Dijk MR, Thompson J, Waters AP, Braks JAM, Dodemont HJ, Stunnenberg HG, van Gemert G-J, Sauerwein RW, Eling W (2001) A central role for P48/45 in malaria parasite male gamete fertility. Cell 104:153–164PubMedGoogle Scholar
  81. Vaughan JA, Hensley L, Beier JC (1994a) Sporogonic development of Plasmodium yoelii in five anopheline species. J Parasitol 80:674–681PubMedGoogle Scholar
  82. Vaughan JA, Noden BH, Beier JC (1994b) Sporogonic development of cultured Plasmodium falciparum in six species of laboratory-reared Anopheles mosquitoes. Am J Trop Med Hyg 51:233–243PubMedGoogle Scholar
  83. Vermeulen AN, Ponnudurai T, Beckers PJ, Verhave JP, Smits MA, Meuwissen JH (1985) Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito. J Exp Med 162:1460–1476PubMedCrossRefGoogle Scholar
  84. Vernick KD, Fujioka H, Aikawa M (1999) Plasmodium gallinaceum: a novel morphology of malaria ookinetes in the midgut of the mosquito vector. Exp Parasitol 91:362–366PubMedCrossRefGoogle Scholar
  85. Vinetz JM, Dave SK, Specht CA, Brameld KA, Hayward RE, Fidock DA (1999) The chitinase PfCHT1 from the human malaria parasite Plasmodium falciparum lacks proenzyme and chitin-binding domains and displays unique substrate preferences. Proc Natl Acad Sci USA 96:14061–14066PubMedCrossRefGoogle Scholar
  86. Vinetz JM, Valenzuela JG, Specht CA, Aravind L, Langer RC, Ribeiro JM, Kaslow DC (2000) Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut. J Biol Chem 275:10331–10341PubMedCrossRefGoogle Scholar
  87. Vlachou D, Zimmermann T, Cantera R, Janse C, Waters A, Kafatos F (2004) Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion. Cell Microbiol 6:671–685PubMedCrossRefGoogle Scholar
  88. Williamson K, Kaslow D (1993) Strain polymorphism of Plasmodium falciparum transmission-blocking target antigen Pfs230. Mol Biochem Parasitol 62:125–128PubMedCrossRefGoogle Scholar
  89. Williamson KC (2003) Pfs230: from malaria transmission-blocking vaccine candidate toward function. Parasite Immunol 25:351–359PubMedCrossRefGoogle Scholar
  90. Yoshida S, Matsuoka H, Luo E, Iwai K, Arai M, Sinden RE, Ishii A (1999) A single-chain antibody fragment specific for the Plasmodium berghei ookinete protein Pbs21 confers transmission blockade in the mosquito midgut. Mol Biochem Parasitol 104:195–204Google Scholar
  91. Yuda M, Sakaida H, Chinzei Y (1999a) Targeted disruption of the Plasmodium berghei CTRP gene reveals its essential role in malaria infection of the vector mosquito. J Exp Med 190:1711–1716PubMedCrossRefGoogle Scholar
  92. Yuda M, Sawai T, Chinzei Y (1999b) Structure and expression of an adhesive proteinlike molecule of mosquito invasive-stage malarial parasite. J Exp Med 189:1947–1952PubMedCrossRefGoogle Scholar
  93. Yuda M, Yano K, Tsuboi T, Torii M, Chinzei Y (2001) von Willebrand Factor A domainrelated protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. Mol Biochem Parasitol 116:65–72PubMedCrossRefGoogle Scholar
  94. Zheng L, Cornel AJ, Wang R, Erfle H, Voss H, Ansorge W, Kafatos FC, Collins FH (1997) Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science 276:425–428Google Scholar
  95. Zieler H, Dvorak JA (2000) Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. Proc Natl Acad Sci USA 97:11516–11521PubMedCrossRefGoogle Scholar
  96. Zieler H, Garon CF, Fischer ER, Shahabuddin M (1998) Adhesion of Plasmodium gallinaceum ookinetes to the Aedes aegypti midgut: sites of parasite attachment and morphological changes in the ookinete. J Eukaryot Microbiol 45:512–520PubMedGoogle Scholar
  97. Zieler H, Nawrocki JP, Shahabuddin M (1999) Plasmodium gallinaceum ookinetes adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. J Exp Biol 202:485–495PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. M. Vinetz
    • 1
  1. 1.Division of Infectious DiseasesUniversity of California, San Diego School of MedicineUSA

Personalised recommendations