Skip to main content

The Plastid of Plasmodium spp.: A Target for Inhibitors

  • Chapter
Book cover Malaria: Drugs, Disease and Post-genomic Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 295))

Abstract

Determined efforts are being made to explore the non-photosynthetic plastid organelle of Plasmodium falciparum as a target for drug development. Certain antibiotics that block organellar protein synthesis are already in clinical use as antimalarials. However, all the indications are that these should be used only in combination with conventional antimalarials. The use of antibiotics such as doxycycline and clindamycin may reduce the development of drug resistant parasites and such means to avoid drug resistance should be explored hand-in-hand with drug development. Genomic information predicts that fatty acid type II (FAS II) and isoprenoid biosynthetic pathways are localized to the plastid. However, clinical trials with fosmidomycin (a specific inhibitor of DOXP reductase in the non-mevalonate pathway for isoprenoids) suggest it too should only be used in drug combinations. Prospects for more potent antimalarial compounds have emerged from studies of several of the enzymes involved in the FAS II pathway. Lead antibiotics such as thiolactomycin (an inhibitor of β-ketoacyl- ACP synthase) and triclosan (a specific inhibitor of enoyl-ACP reductase) have led to structurally similar, active compounds that rapidly kill ring- and trophozoite-stage parasites. The FAS II pathway is of particular interest to the pharma-industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adehossi E, Parola P, Foucault C, Delmont J, Brouqui P, Badiaga S, Ranque S (2003) Three day quinine-clindamycin treatment of uncomplicated falciparum malaria imported from the tropics. Antimicrob Agents Chemother 47:1173.

    Article  PubMed  CAS  Google Scholar 

  • Andersen GR, Nissen P, Nyborg J (2003) Elongation factors in protein synthesis. Trends Biochem Sci 28:434–441

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Oloo AJ, Gordon DM, Ragama OB, Aleman GM, Berman JD, Tang DB, Dunne MW, Shanks GD (1998) Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in western Kenya. Clin Infect Dis 26:146–150

    PubMed  CAS  Google Scholar 

  • Bagley MC, Bashford KE, Hesketh CL, Moody CJ (2000) Total synthesis of the thiopeptide promothiocin A. J Am Chem Soc 122:3301–3313

    Article  CAS  Google Scholar 

  • Beeson JG, Winstanley PA, McFadden GI, Brown GV (2001) New agents to combat malaria. Nature Med 7:149–150

    PubMed  CAS  Google Scholar 

  • Black FT, Wildfang IL, Borgbjerg K (1985) Activity of fusidic acid against Plasmodium falciparum in vitro. Lancet 325:578–579

    Article  Google Scholar 

  • Borrmann S, Adegnika AA, Matsiegui P-B, Issifou S, Schindler A, Mawili-Mboumba DP, Baranek T, Wiesner J, Jomaa H, Kremsner PG (2004). Fosmidomycin-clindamycin for Plasmodium falciparum infections in African children. J Infect Dis 189:901–908

    Article  PubMed  CAS  Google Scholar 

  • Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:85–100

    Article  CAS  Google Scholar 

  • Bracchi-Richard V, Nguyen KT, Zhou Y, Rajagopalan PTR, Chakrabarti D, Pei D (2001) Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum. Arch Biochem Biophys 396:162–170

    Google Scholar 

  • Campbell JW, Cronan JE (2001) Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery. Ann Rev Microbiol 55:305–332

    Article  CAS  Google Scholar 

  • Camps M, Arrizabalaga G, Boothroyd J (2002) An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Mol. Microbiol 43:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Clough B, Rangachari K, Strath M, Preiser PR, Wilson RJM (1999) Antibiotic inhibitors of organellar protein synthesis in Plasmodium falciparum. Protist 150:189–195

    PubMed  CAS  Google Scholar 

  • Clough B, Strath M, Preiser P, Denny P, Wilson RJM (1997) Thiostrepton binds to malarial plastid rRNA. FEBS Lett 406:123–125

    Article  PubMed  CAS  Google Scholar 

  • Clough B, Wilson RJM (2001) Antibiotics and the plasmodial plastid organelle. In: Rosenthal PJ (ed) Antimalarial chemotherapy: mechanisms of action, resistance, and new directions in drug discovery. Humana Press Inc., Totowa, NJ, pp 265–286

    Google Scholar 

  • Conn GL, Draper DE, Lattman EE, Gittis AG (1999) Crystal structure of a conserved ribosomal protein-RNA complex. Science 284:1171–1174

    Article  PubMed  CAS  Google Scholar 

  • Darst SA (2004) New inhibitors targeting bacterial RNA polymerase. Trends Biochem Sci 29:159–162

    Article  PubMed  CAS  Google Scholar 

  • Dhanasekaran S, Chandra NR, Chandrasekhar BK, Rangajarin PN, Padmanaban G (2003) δ-aminolevulinic acid dehydratase from Plasmodium falciparum-indigenous vs imported. J Biol Chem 279:6934–6942

    Article  PubMed  CAS  Google Scholar 

  • Feagin JE, Mericle BL, Werner E, Morris M (1997) Identification of additional rRNA fragments encoded by the Plasmodium falciparum 6 kb element. Nucl Acids Res 25:438–446

    Article  PubMed  CAS  Google Scholar 

  • Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407–409

    PubMed  CAS  Google Scholar 

  • Foth BJ, McFadden GI (2003) The apicoplast: A plastid in Plasmodium falciparum and other apicomplexan parasites. Int Rev Cytol 224:57–110

    PubMed  Google Scholar 

  • Foth BJ, Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708

    Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    PubMed  CAS  Google Scholar 

  • Giglione C, Meinnel T (2001) Organellar peptide deformylases: universality of the N-terminal methionine cleavage mechanism. Trends Plant Sci 6:566–572

    Article  PubMed  CAS  Google Scholar 

  • Goerg H, Ochola SA, Goerg R (1999) Treatment of malaria tropica with a fixed combination of rifampicin, co-trioxazole and isoniazid: a clinical study. Chemotherapy 45:68–76

    Article  PubMed  CAS  Google Scholar 

  • Gubbels M-J, Li C, Striepen B (2003) High throughput growth assay for Toxoplasma gondii using yellow fluorescent protein. Antimicrob Agents Chemother 47:309–316

    Article  PubMed  CAS  Google Scholar 

  • Hackbarth CJ, Chen DZ, Lewis JG, Clark K, Mangold JB, Cramer JA, Margolis PS, Wang W, Koehn J, Wu C, et al. (2002) N-alkyl urea hydroxamic acids as a new class of peptide deformylase inhibitors with antibacterial activity. Antimicrob Agents Chemother 46:2752–2764

    Article  PubMed  CAS  Google Scholar 

  • He CY, Striepen B, Pletcher CH, Murray JM, Roos DS (2001a) Targeting and processing of nuclear-encoded apicoplast proteins in plastid segregation mutants of Toxoplasma gondii. J Biol Chem 276:28436–28442

    PubMed  CAS  Google Scholar 

  • He CY, Shaw MK, Pletcher CH, Striepen B, Tilney LG, Roos DS (2001b) A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 20:330–339

    Article  PubMed  CAS  Google Scholar 

  • Heath RJ, Yu Y-T, Shapiro MA, Olson E, Rock CO (1998) Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J Biol Chem 273:30316–30320

    Article  PubMed  CAS  Google Scholar 

  • Jelenska J, Crawford MJ, Harb OS, Zuther E, Haselkorn R, Roos DS, Gornicki P (2001) Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii. Proc Natl Acad Sci USA 98:2723–2728

    Article  PubMed  CAS  Google Scholar 

  • Jelenska J, Sirikhachornkit A, Haselkorn R, Gornicki P (2002) The carboxyltransferase activity of the apicoplast acetyl-CoA carboxylase of Toxoplasma gondii is the target of aryloxyphenoxypropionate inhibitors. J Biol Chem 277:23208–23215

    Article  PubMed  CAS  Google Scholar 

  • Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Sodati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Ehrlich SD, Albertini A, Amati G, Anderson KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, et al. (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100:4678–4683

    PubMed  CAS  Google Scholar 

  • Kuemmerle H-P, Murakawa T, Sakamoto H, Sato N, Konishi T, De Santis F (1985) Fosmidomycin, a new phosphonic acid antibiotic. Part II: Human pharmacokinetics 2. Preliminary early phase IIa clinical studies. Int J Clin Pharm Ther Tox 23:521–528

    CAS  Google Scholar 

  • Kumar A, Nguyen KT, Srivathsan S, Ornstein B, Turley S, Hirsh I, Pei D, Hol WGJ (2002) Crystals of peptide deformylase from Plasmodium falciparum reveal critical characteristics of the active site for drug design. Structure 10:357–367

    Article  PubMed  CAS  Google Scholar 

  • Kuo MR, Morbidoni HR, Alland D, Sneddon SF, Gourlie BB, Staveski MM, Leonard M, Gregory JS, Janjigian AD, et al. (2003) Targeting tuberculosis and malaria through inhibition of enoyl reductase. J Biol Chem 278:20851–20859

    Article  PubMed  CAS  Google Scholar 

  • Lell P, Kremsner PG (2002) Clindamycin as an antimalarial drug: Review of clinical trials. Antimicrob Agents Chemother 46:2315–2320

    Article  PubMed  CAS  Google Scholar 

  • Lell B, Ruangweerayut R, Wiesner J, Missinou AM, Schindler A, Baranek T, Hintz M, Hutchinson DB, Jomaa H, Kremsner PG (2003) Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob Agents Chemother 47:735–738.

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Katakura K, Suzuki M (2002) Inhibition of mitochondrial and plastid activity of Plasmodium falciparum by minocycline. FEBS Lett 515:71–74

    Article  PubMed  CAS  Google Scholar 

  • McClean KL, Hitchman D, Shafran SD (1992) Norfloxacin is inferior to chloroquine for falciparum malaria in northwestern Zambia: a comparative clinical trial. J Infect Dis 165:904–907

    PubMed  CAS  Google Scholar 

  • McConkey GA, Rogers MJ, McCutchan TF (1997) Inhibition of Plasmodium falciparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. J Biol Chem 272:2046–2049

    PubMed  CAS  Google Scholar 

  • McFadden GI, Roos DS (1999) Apicomplexan plastids as drug targets. Trends Microbiol 7:328–333

    PubMed  CAS  Google Scholar 

  • McLeod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, Mack DG, Roberts CW, Samuel BU, Lyons RE, Dorris M, Milhous WK, Rice DW (2001) Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of Apicomplexan FabI. Int J Parasitol 31:109–113

    PubMed  CAS  Google Scholar 

  • Mahmoudi N, Ciceron L, Franetich J-F, Farhati K, Silvie O, Eling W, Sauerwein R, Danis M, Mazier D, Derouin F (2003) In vitro activities of 25 quinolones and fluoroquinolones against liver and blood stage Plasmodium spp. Antimicrob Agents Chemother 47:2636–2639

    Article  PubMed  CAS  Google Scholar 

  • Mesters JR, Zeef LAH, Hilgenfeld R, de Graaf JM, Kraal B, Bosch L (1994) The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli. EMBO J 13:4877–4885

    PubMed  CAS  Google Scholar 

  • Miesel L, Greene J, Black TA (2003) Genetic strategies for antibacterial drug discovery. Nature Rev Genet 4:442–456

    Article  CAS  PubMed  Google Scholar 

  • Missinou AM, Borrmann S, Schindler A, Issifou S, Adegnika AA, Matsiegui P-B, Binder R, Lell B, Wiesner J, Baranek T, Jomaa H, Kremsner PG (2002) Fosmidomycin for malaria. Lancet 360:1941–1942

    Article  PubMed  CAS  Google Scholar 

  • Nguyen KT, Hu X, Colton C, Chakrabarti R, Zhu MX, Pei D (2003) Characterization of a human peptide deformylase: Implications for antibacterial drug design. Biochemistry 42:9952–9958

    PubMed  CAS  Google Scholar 

  • Ohrt C, Willingmyre GD, Lee PJ, Knirsch C, Milhous WK (2002) Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 46:2518–2524

    Article  PubMed  CAS  Google Scholar 

  • Padmanaban G (2003) Drug targets in malaria parasites. Adv Biochem Engin/ Biotechnol 84:123–141

    CAS  Google Scholar 

  • Perozzo R, Kuo M, Sidhu AS, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC (2002) Structural elucidation of the specificity of the antibacterial agent Triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277:13106–13114

    Article  PubMed  CAS  Google Scholar 

  • Pillai S, Rajagopal C, Kapoor M, Kumar G, Gupta A, Surolia N (2003) Functional characterization of β-ketoacyl-ACP reductase (FabG) from Plasmodium falciparum. Biochem Biophys Res Comun 303:387–392

    CAS  Google Scholar 

  • Price AC, Choi K-H, Heath RJ, Li Z, White SW, Rock CO (2001) Inhibition of β-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. J Biol Chem 276:6551–6559

    PubMed  CAS  Google Scholar 

  • Prigge ST, He X, Gerena L, Waters NC, Reynolds KA (2003) The initiating steps of type II fatty acid synthase in Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and pfKASIII. Biochemistry 42:1160–1169

    Article  PubMed  CAS  Google Scholar 

  • Pukrittayakamee S, Viravan C, Charoenlarp P, Yeaumput C, Wilson RJM, White NJ (1994) Antimalarial effects of rifampicin in vivax malaria. Antimicrob Agents Chemother 38:511–514

    PubMed  CAS  Google Scholar 

  • Pukrittayakamee S, Prakongpan S, Wanwimolruk S, Clemens R, Loareesuwan S, White NJ (2003) Adverse effect of rifampicin on quinine efficiency in uncomplicated falciparum malaria. Antimicrob Agents Chemother 47:15009–15013

    Google Scholar 

  • Ralph SA, D’Ombrain MC, McFadden GI (2001) The apicoplast as a drug target. Drug Res Updates 4:145–151

    CAS  Google Scholar 

  • Ralph SA, van Dooren GG, Waller RF, Crawford M, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI (2004) Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2:203–216

    Article  PubMed  CAS  Google Scholar 

  • Ranque S, Badiaga S, Delmont J, Brouqui P (2002) Triangular test applied to the clinical trial of azithromycin against relapses in Plasmodium vivax infections. Malaria J 1:13

    Google Scholar 

  • Reichenberg A, Wiesner J, Weidemeyer C, Dreiseidler E, Sanderbrand S, Altincicek B, Beck E, Schlitzer M, Jomaa H (2001) Diaryl ester prodrugs of FR900098 with improved in vivo antimalarial activity. Bioorganic Med Chem Lett 11:833–835

    CAS  Google Scholar 

  • Robien MA, Nguyen KT, Kumar A, Hirsh I, Turley S, Pei D, Hol WGJ (2004) An improved crystal form of Plasmodium falciparum peptide deformylase. Prot Sci 13:1155–1163

    CAS  Google Scholar 

  • Rohdich F, Eisenreich W, Wungsintaweekul J, Hecht S, Schuhr CA, Bacher A (2001) 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) from Plasmodium falciparum. Eur J Biochem 268:3190–3197

    Article  PubMed  CAS  Google Scholar 

  • Rogers MJ, Bukhman YV, McCutchan TF, Draper DE (1997) Interaction of thiostrepton with an RNA fragment derived from plastid-encoded ribosomal RNA of the malaria parasite. RNA 3:815–820

    PubMed  CAS  Google Scholar 

  • Rogers MJ, Cundliffe E, McCutchan TF (1998) The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrob Agents Chemother 42:715–716

    PubMed  CAS  Google Scholar 

  • Roos DS, Crawford MJ, Donald RGK, Fraunholz M, Harb OS, He CY, Kissinger J, Shaw MK, Striepen B (2002) Mining the Plasmodium genome database to define organellar function: what does the apicoplast do? Phil Trans R Soc Lond B 357:35–46

    CAS  Google Scholar 

  • Sato S, Clough B, Coates L, Wilson RJM (2004) Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155:117–125

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Tews I, Wilson RJM (2000) Impact of an endocytobiont on the genome of apicomplexans. Int. J. Parasitol 30:427–439

    PubMed  CAS  Google Scholar 

  • Sato S, Wilson RJM (2002) The genome of Plasmodium falciparum encodes an active δ-aminolevulinate dehydratase. Curr Genet 40:391–398

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Wilson RJM (2003) The use of DsRed in single-and dual-colour fluorescence labeling of live malarial organelles. Mol Biochem Parasitol 134:175–179

    Google Scholar 

  • Seeber F (2003) Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic Apicomplexa. Current Drug Targets-Immune, Endocrine Metabolic Disorders 3:99–109

    CAS  Google Scholar 

  • Sharma SK, Kapoor M, Ramya TNC, Kumar S, Kumar G, Modak R, Sharma S, Surolia N, Surolia A (2003) Identification, characterization, and inhibition of Plasmodium falciparum β-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J Biol Chem 278:45661–45671

    PubMed  CAS  Google Scholar 

  • Strath M, Scott-Finnigan T, Gardner M, Williamson D, Wilson I (1993). Antimalarial activity of rifampicin in vitro and in rodent models. Trans R Soc Trop Med Hyg 87:211–216

    Article  PubMed  CAS  Google Scholar 

  • Surolia N, Ramachandra RSP, Surolia A (2002) Paradigm shifts in malaria parasite biochemistry and anti-malarial chemotherapy. BioEssays 24:192–196

    Article  PubMed  CAS  Google Scholar 

  • Surolia N, Padmanaban G (1992) Denovo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun 187:744–750

    Article  PubMed  CAS  Google Scholar 

  • Surolia N, Surolia A (2001). Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. NatMed 7:167–173

    CAS  Google Scholar 

  • Tripathi KD, Sharma AK, Valecha N, Kulpati DD (1993) Curative efficiacy of norfloxacin in falciparum malaria. Ind J Med Res 97:176–178

    CAS  Google Scholar 

  • Vogeley L, Palm GF, Mesters JR, Higenfeld R (2001) Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. J Biol Chem 276:17149–17155

    Article  PubMed  CAS  Google Scholar 

  • Waller AS, Clements JM (2002) Novel approaches to antimicrobial therapy: peptide deformylase. Curr Opin Drug Discov Dev 5:785–792

    CAS  Google Scholar 

  • Waller RF, Keeling PJ, Donald RGK, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos D. Proc Natl Acad Sci USA 95:12352–12357

    Google Scholar 

  • Waller RF, Ralph SA, Reed MB, Su V, Douglas JD, Minnikin DE, Cowman AF, Besra GS, McFadden GI (2003) A type II pathway for fatty acid biosynthesis presents drug targets in Plasmodium falciparum. Antimicrob Agents Chemother 47:297–301

    Article  PubMed  CAS  Google Scholar 

  • Watt G, Shanks GD, Edstein MD, Pavanand K, Webster HK, Wechgritaya S (1991) Ciprofloxacin treatment of drug-resistant malaria. J Infect Dis 164:602–604

    PubMed  CAS  Google Scholar 

  • Weissig V, Vetro-Widenhouse TS, Rowe TC (1997) Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA Cell Biol 16:1483–1492

    Article  PubMed  CAS  Google Scholar 

  • White NJ (1999) Delaying antimalarial drug resistance with combination chemotherapy. Parassitologia 41:301–308

    PubMed  CAS  Google Scholar 

  • Wiesner J, Hintz M, Altincicek B, Sanderbrand S, Weidemeyer C, Beck E, Jomaa H (2000) Plasmodium falciparum: Detection of the deoxyxylulose 5-phosphate reductoisomerase activity. Exp Parasitol 96:182–186

    Article  PubMed  CAS  Google Scholar 

  • Wiesner J, Borrmann S, Jomaa H (2003) Fosmidomycin for the treatment of malaria. Parasitol Res 90:S71–S76

    Article  PubMed  Google Scholar 

  • Wiesner J, Henschker D, Hutchinson DB, Beck E, Jomaa H (2002) In vitro and in vivo synergy of fosmidomycin, a novel antimalarial drug, with clindamycin. Antimicrob. Agents Chemother 46:2889–2894

    Article  PubMed  CAS  Google Scholar 

  • Wiesner J, Sanderbrand S, Altincicek B, Beck E, Jomaa H (2001) Seeking new targets for antiparasitic agents. TRENDS Parasitol 17:7–8

    Article  PubMed  CAS  Google Scholar 

  • Wilson RJM (2002) Progress with parasite plastids. J Mol Biol 319:257–274

    PubMed  CAS  Google Scholar 

  • Wilson RJM, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172

    PubMed  CAS  Google Scholar 

  • Yeo EAT, Edstein MD, Shanks GD, Rieckmann KH (1997) Potentiation of the antimalarial activity of atovaquone by doxycycline against Plasmodium falciparum in vitro. Parasitol Res 83:489–491

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Marchewka MJ, Woods KM, Upton SJ, Keithly JS (2000) Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum. Mol Biochem Parasitol 105:253–260

    Article  PubMed  CAS  Google Scholar 

  • Zuther E, Johnson JJ, Haselkorn R, McLeod R, Gornicki P (1999) Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc Natl Acad Sci USA 96:13387–13392

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sato, S., Wilson, R.J.M. (2005). The Plastid of Plasmodium spp.: A Target for Inhibitors. In: Compans, R.W., et al. Malaria: Drugs, Disease and Post-genomic Biology. Current Topics in Microbiology and Immunology, vol 295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29088-5_10

Download citation

Publish with us

Policies and ethics