The Plastid of Plasmodium spp.: A Target for Inhibitors

  • S. Sato
  • R. J. M. Wilson
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 295)


Determined efforts are being made to explore the non-photosynthetic plastid organelle of Plasmodium falciparum as a target for drug development. Certain antibiotics that block organellar protein synthesis are already in clinical use as antimalarials. However, all the indications are that these should be used only in combination with conventional antimalarials. The use of antibiotics such as doxycycline and clindamycin may reduce the development of drug resistant parasites and such means to avoid drug resistance should be explored hand-in-hand with drug development. Genomic information predicts that fatty acid type II (FAS II) and isoprenoid biosynthetic pathways are localized to the plastid. However, clinical trials with fosmidomycin (a specific inhibitor of DOXP reductase in the non-mevalonate pathway for isoprenoids) suggest it too should only be used in drug combinations. Prospects for more potent antimalarial compounds have emerged from studies of several of the enzymes involved in the FAS II pathway. Lead antibiotics such as thiolactomycin (an inhibitor of β-ketoacyl- ACP synthase) and triclosan (a specific inhibitor of enoyl-ACP reductase) have led to structurally similar, active compounds that rapidly kill ring- and trophozoite-stage parasites. The FAS II pathway is of particular interest to the pharma-industry.


Plasmodium Falciparum Antimicrob Agent Apicomplexan Parasite Malaria Parasite Plasmodium Falciparum Intraerythrocytic Developmental Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adehossi E, Parola P, Foucault C, Delmont J, Brouqui P, Badiaga S, Ranque S (2003) Three day quinine-clindamycin treatment of uncomplicated falciparum malaria imported from the tropics. Antimicrob Agents Chemother 47:1173.PubMedCrossRefGoogle Scholar
  2. Andersen GR, Nissen P, Nyborg J (2003) Elongation factors in protein synthesis. Trends Biochem Sci 28:434–441PubMedCrossRefGoogle Scholar
  3. Andersen SL, Oloo AJ, Gordon DM, Ragama OB, Aleman GM, Berman JD, Tang DB, Dunne MW, Shanks GD (1998) Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in western Kenya. Clin Infect Dis 26:146–150PubMedGoogle Scholar
  4. Bagley MC, Bashford KE, Hesketh CL, Moody CJ (2000) Total synthesis of the thiopeptide promothiocin A. J Am Chem Soc 122:3301–3313CrossRefGoogle Scholar
  5. Beeson JG, Winstanley PA, McFadden GI, Brown GV (2001) New agents to combat malaria. Nature Med 7:149–150PubMedGoogle Scholar
  6. Black FT, Wildfang IL, Borgbjerg K (1985) Activity of fusidic acid against Plasmodium falciparum in vitro. Lancet 325:578–579CrossRefGoogle Scholar
  7. Borrmann S, Adegnika AA, Matsiegui P-B, Issifou S, Schindler A, Mawili-Mboumba DP, Baranek T, Wiesner J, Jomaa H, Kremsner PG (2004). Fosmidomycin-clindamycin for Plasmodium falciparum infections in African children. J Infect Dis 189:901–908PubMedCrossRefGoogle Scholar
  8. Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:85–100CrossRefGoogle Scholar
  9. Bracchi-Richard V, Nguyen KT, Zhou Y, Rajagopalan PTR, Chakrabarti D, Pei D (2001) Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum. Arch Biochem Biophys 396:162–170Google Scholar
  10. Campbell JW, Cronan JE (2001) Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery. Ann Rev Microbiol 55:305–332CrossRefGoogle Scholar
  11. Camps M, Arrizabalaga G, Boothroyd J (2002) An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Mol. Microbiol 43:1309–1318PubMedCrossRefGoogle Scholar
  12. Clough B, Rangachari K, Strath M, Preiser PR, Wilson RJM (1999) Antibiotic inhibitors of organellar protein synthesis in Plasmodium falciparum. Protist 150:189–195PubMedGoogle Scholar
  13. Clough B, Strath M, Preiser P, Denny P, Wilson RJM (1997) Thiostrepton binds to malarial plastid rRNA. FEBS Lett 406:123–125PubMedCrossRefGoogle Scholar
  14. Clough B, Wilson RJM (2001) Antibiotics and the plasmodial plastid organelle. In: Rosenthal PJ (ed) Antimalarial chemotherapy: mechanisms of action, resistance, and new directions in drug discovery. Humana Press Inc., Totowa, NJ, pp 265–286Google Scholar
  15. Conn GL, Draper DE, Lattman EE, Gittis AG (1999) Crystal structure of a conserved ribosomal protein-RNA complex. Science 284:1171–1174PubMedCrossRefGoogle Scholar
  16. Darst SA (2004) New inhibitors targeting bacterial RNA polymerase. Trends Biochem Sci 29:159–162PubMedCrossRefGoogle Scholar
  17. Dhanasekaran S, Chandra NR, Chandrasekhar BK, Rangajarin PN, Padmanaban G (2003) δ-aminolevulinic acid dehydratase from Plasmodium falciparum-indigenous vs imported. J Biol Chem 279:6934–6942PubMedCrossRefGoogle Scholar
  18. Feagin JE, Mericle BL, Werner E, Morris M (1997) Identification of additional rRNA fragments encoded by the Plasmodium falciparum 6 kb element. Nucl Acids Res 25:438–446PubMedCrossRefGoogle Scholar
  19. Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407–409PubMedGoogle Scholar
  20. Foth BJ, McFadden GI (2003) The apicoplast: A plastid in Plasmodium falciparum and other apicomplexan parasites. Int Rev Cytol 224:57–110PubMedGoogle Scholar
  21. Foth BJ, Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708Google Scholar
  22. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedGoogle Scholar
  23. Giglione C, Meinnel T (2001) Organellar peptide deformylases: universality of the N-terminal methionine cleavage mechanism. Trends Plant Sci 6:566–572PubMedCrossRefGoogle Scholar
  24. Goerg H, Ochola SA, Goerg R (1999) Treatment of malaria tropica with a fixed combination of rifampicin, co-trioxazole and isoniazid: a clinical study. Chemotherapy 45:68–76PubMedCrossRefGoogle Scholar
  25. Gubbels M-J, Li C, Striepen B (2003) High throughput growth assay for Toxoplasma gondii using yellow fluorescent protein. Antimicrob Agents Chemother 47:309–316PubMedCrossRefGoogle Scholar
  26. Hackbarth CJ, Chen DZ, Lewis JG, Clark K, Mangold JB, Cramer JA, Margolis PS, Wang W, Koehn J, Wu C, et al. (2002) N-alkyl urea hydroxamic acids as a new class of peptide deformylase inhibitors with antibacterial activity. Antimicrob Agents Chemother 46:2752–2764PubMedCrossRefGoogle Scholar
  27. He CY, Striepen B, Pletcher CH, Murray JM, Roos DS (2001a) Targeting and processing of nuclear-encoded apicoplast proteins in plastid segregation mutants of Toxoplasma gondii. J Biol Chem 276:28436–28442PubMedGoogle Scholar
  28. He CY, Shaw MK, Pletcher CH, Striepen B, Tilney LG, Roos DS (2001b) A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 20:330–339PubMedCrossRefGoogle Scholar
  29. Heath RJ, Yu Y-T, Shapiro MA, Olson E, Rock CO (1998) Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J Biol Chem 273:30316–30320PubMedCrossRefGoogle Scholar
  30. Jelenska J, Crawford MJ, Harb OS, Zuther E, Haselkorn R, Roos DS, Gornicki P (2001) Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii. Proc Natl Acad Sci USA 98:2723–2728PubMedCrossRefGoogle Scholar
  31. Jelenska J, Sirikhachornkit A, Haselkorn R, Gornicki P (2002) The carboxyltransferase activity of the apicoplast acetyl-CoA carboxylase of Toxoplasma gondii is the target of aryloxyphenoxypropionate inhibitors. J Biol Chem 277:23208–23215PubMedCrossRefGoogle Scholar
  32. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Sodati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576PubMedCrossRefGoogle Scholar
  33. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Anderson KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, et al. (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100:4678–4683PubMedGoogle Scholar
  34. Kuemmerle H-P, Murakawa T, Sakamoto H, Sato N, Konishi T, De Santis F (1985) Fosmidomycin, a new phosphonic acid antibiotic. Part II: Human pharmacokinetics 2. Preliminary early phase IIa clinical studies. Int J Clin Pharm Ther Tox 23:521–528Google Scholar
  35. Kumar A, Nguyen KT, Srivathsan S, Ornstein B, Turley S, Hirsh I, Pei D, Hol WGJ (2002) Crystals of peptide deformylase from Plasmodium falciparum reveal critical characteristics of the active site for drug design. Structure 10:357–367PubMedCrossRefGoogle Scholar
  36. Kuo MR, Morbidoni HR, Alland D, Sneddon SF, Gourlie BB, Staveski MM, Leonard M, Gregory JS, Janjigian AD, et al. (2003) Targeting tuberculosis and malaria through inhibition of enoyl reductase. J Biol Chem 278:20851–20859PubMedCrossRefGoogle Scholar
  37. Lell P, Kremsner PG (2002) Clindamycin as an antimalarial drug: Review of clinical trials. Antimicrob Agents Chemother 46:2315–2320PubMedCrossRefGoogle Scholar
  38. Lell B, Ruangweerayut R, Wiesner J, Missinou AM, Schindler A, Baranek T, Hintz M, Hutchinson DB, Jomaa H, Kremsner PG (2003) Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob Agents Chemother 47:735–738.PubMedCrossRefGoogle Scholar
  39. Lin Q, Katakura K, Suzuki M (2002) Inhibition of mitochondrial and plastid activity of Plasmodium falciparum by minocycline. FEBS Lett 515:71–74PubMedCrossRefGoogle Scholar
  40. McClean KL, Hitchman D, Shafran SD (1992) Norfloxacin is inferior to chloroquine for falciparum malaria in northwestern Zambia: a comparative clinical trial. J Infect Dis 165:904–907PubMedGoogle Scholar
  41. McConkey GA, Rogers MJ, McCutchan TF (1997) Inhibition of Plasmodium falciparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. J Biol Chem 272:2046–2049PubMedGoogle Scholar
  42. McFadden GI, Roos DS (1999) Apicomplexan plastids as drug targets. Trends Microbiol 7:328–333PubMedGoogle Scholar
  43. McLeod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, Mack DG, Roberts CW, Samuel BU, Lyons RE, Dorris M, Milhous WK, Rice DW (2001) Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of Apicomplexan FabI. Int J Parasitol 31:109–113PubMedGoogle Scholar
  44. Mahmoudi N, Ciceron L, Franetich J-F, Farhati K, Silvie O, Eling W, Sauerwein R, Danis M, Mazier D, Derouin F (2003) In vitro activities of 25 quinolones and fluoroquinolones against liver and blood stage Plasmodium spp. Antimicrob Agents Chemother 47:2636–2639PubMedCrossRefGoogle Scholar
  45. Mesters JR, Zeef LAH, Hilgenfeld R, de Graaf JM, Kraal B, Bosch L (1994) The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli. EMBO J 13:4877–4885PubMedGoogle Scholar
  46. Miesel L, Greene J, Black TA (2003) Genetic strategies for antibacterial drug discovery. Nature Rev Genet 4:442–456CrossRefPubMedGoogle Scholar
  47. Missinou AM, Borrmann S, Schindler A, Issifou S, Adegnika AA, Matsiegui P-B, Binder R, Lell B, Wiesner J, Baranek T, Jomaa H, Kremsner PG (2002) Fosmidomycin for malaria. Lancet 360:1941–1942PubMedCrossRefGoogle Scholar
  48. Nguyen KT, Hu X, Colton C, Chakrabarti R, Zhu MX, Pei D (2003) Characterization of a human peptide deformylase: Implications for antibacterial drug design. Biochemistry 42:9952–9958PubMedGoogle Scholar
  49. Ohrt C, Willingmyre GD, Lee PJ, Knirsch C, Milhous WK (2002) Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 46:2518–2524PubMedCrossRefGoogle Scholar
  50. Padmanaban G (2003) Drug targets in malaria parasites. Adv Biochem Engin/ Biotechnol 84:123–141Google Scholar
  51. Perozzo R, Kuo M, Sidhu AS, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC (2002) Structural elucidation of the specificity of the antibacterial agent Triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277:13106–13114PubMedCrossRefGoogle Scholar
  52. Pillai S, Rajagopal C, Kapoor M, Kumar G, Gupta A, Surolia N (2003) Functional characterization of β-ketoacyl-ACP reductase (FabG) from Plasmodium falciparum. Biochem Biophys Res Comun 303:387–392Google Scholar
  53. Price AC, Choi K-H, Heath RJ, Li Z, White SW, Rock CO (2001) Inhibition of β-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. J Biol Chem 276:6551–6559PubMedGoogle Scholar
  54. Prigge ST, He X, Gerena L, Waters NC, Reynolds KA (2003) The initiating steps of type II fatty acid synthase in Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and pfKASIII. Biochemistry 42:1160–1169PubMedCrossRefGoogle Scholar
  55. Pukrittayakamee S, Viravan C, Charoenlarp P, Yeaumput C, Wilson RJM, White NJ (1994) Antimalarial effects of rifampicin in vivax malaria. Antimicrob Agents Chemother 38:511–514PubMedGoogle Scholar
  56. Pukrittayakamee S, Prakongpan S, Wanwimolruk S, Clemens R, Loareesuwan S, White NJ (2003) Adverse effect of rifampicin on quinine efficiency in uncomplicated falciparum malaria. Antimicrob Agents Chemother 47:15009–15013Google Scholar
  57. Ralph SA, D’Ombrain MC, McFadden GI (2001) The apicoplast as a drug target. Drug Res Updates 4:145–151Google Scholar
  58. Ralph SA, van Dooren GG, Waller RF, Crawford M, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI (2004) Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2:203–216PubMedCrossRefGoogle Scholar
  59. Ranque S, Badiaga S, Delmont J, Brouqui P (2002) Triangular test applied to the clinical trial of azithromycin against relapses in Plasmodium vivax infections. Malaria J 1:13Google Scholar
  60. Reichenberg A, Wiesner J, Weidemeyer C, Dreiseidler E, Sanderbrand S, Altincicek B, Beck E, Schlitzer M, Jomaa H (2001) Diaryl ester prodrugs of FR900098 with improved in vivo antimalarial activity. Bioorganic Med Chem Lett 11:833–835Google Scholar
  61. Robien MA, Nguyen KT, Kumar A, Hirsh I, Turley S, Pei D, Hol WGJ (2004) An improved crystal form of Plasmodium falciparum peptide deformylase. Prot Sci 13:1155–1163Google Scholar
  62. Rohdich F, Eisenreich W, Wungsintaweekul J, Hecht S, Schuhr CA, Bacher A (2001) 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) from Plasmodium falciparum. Eur J Biochem 268:3190–3197PubMedCrossRefGoogle Scholar
  63. Rogers MJ, Bukhman YV, McCutchan TF, Draper DE (1997) Interaction of thiostrepton with an RNA fragment derived from plastid-encoded ribosomal RNA of the malaria parasite. RNA 3:815–820PubMedGoogle Scholar
  64. Rogers MJ, Cundliffe E, McCutchan TF (1998) The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrob Agents Chemother 42:715–716PubMedGoogle Scholar
  65. Roos DS, Crawford MJ, Donald RGK, Fraunholz M, Harb OS, He CY, Kissinger J, Shaw MK, Striepen B (2002) Mining the Plasmodium genome database to define organellar function: what does the apicoplast do? Phil Trans R Soc Lond B 357:35–46Google Scholar
  66. Sato S, Clough B, Coates L, Wilson RJM (2004) Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155:117–125PubMedCrossRefGoogle Scholar
  67. Sato S, Tews I, Wilson RJM (2000) Impact of an endocytobiont on the genome of apicomplexans. Int. J. Parasitol 30:427–439PubMedGoogle Scholar
  68. Sato S, Wilson RJM (2002) The genome of Plasmodium falciparum encodes an active δ-aminolevulinate dehydratase. Curr Genet 40:391–398PubMedCrossRefGoogle Scholar
  69. Sato S, Wilson RJM (2003) The use of DsRed in single-and dual-colour fluorescence labeling of live malarial organelles. Mol Biochem Parasitol 134:175–179Google Scholar
  70. Seeber F (2003) Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic Apicomplexa. Current Drug Targets-Immune, Endocrine Metabolic Disorders 3:99–109Google Scholar
  71. Sharma SK, Kapoor M, Ramya TNC, Kumar S, Kumar G, Modak R, Sharma S, Surolia N, Surolia A (2003) Identification, characterization, and inhibition of Plasmodium falciparum β-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J Biol Chem 278:45661–45671PubMedGoogle Scholar
  72. Strath M, Scott-Finnigan T, Gardner M, Williamson D, Wilson I (1993). Antimalarial activity of rifampicin in vitro and in rodent models. Trans R Soc Trop Med Hyg 87:211–216PubMedCrossRefGoogle Scholar
  73. Surolia N, Ramachandra RSP, Surolia A (2002) Paradigm shifts in malaria parasite biochemistry and anti-malarial chemotherapy. BioEssays 24:192–196PubMedCrossRefGoogle Scholar
  74. Surolia N, Padmanaban G (1992) Denovo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun 187:744–750PubMedCrossRefGoogle Scholar
  75. Surolia N, Surolia A (2001). Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. NatMed 7:167–173Google Scholar
  76. Tripathi KD, Sharma AK, Valecha N, Kulpati DD (1993) Curative efficiacy of norfloxacin in falciparum malaria. Ind J Med Res 97:176–178Google Scholar
  77. Vogeley L, Palm GF, Mesters JR, Higenfeld R (2001) Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. J Biol Chem 276:17149–17155PubMedCrossRefGoogle Scholar
  78. Waller AS, Clements JM (2002) Novel approaches to antimicrobial therapy: peptide deformylase. Curr Opin Drug Discov Dev 5:785–792Google Scholar
  79. Waller RF, Keeling PJ, Donald RGK, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos D. Proc Natl Acad Sci USA 95:12352–12357Google Scholar
  80. Waller RF, Ralph SA, Reed MB, Su V, Douglas JD, Minnikin DE, Cowman AF, Besra GS, McFadden GI (2003) A type II pathway for fatty acid biosynthesis presents drug targets in Plasmodium falciparum. Antimicrob Agents Chemother 47:297–301PubMedCrossRefGoogle Scholar
  81. Watt G, Shanks GD, Edstein MD, Pavanand K, Webster HK, Wechgritaya S (1991) Ciprofloxacin treatment of drug-resistant malaria. J Infect Dis 164:602–604PubMedGoogle Scholar
  82. Weissig V, Vetro-Widenhouse TS, Rowe TC (1997) Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA Cell Biol 16:1483–1492PubMedCrossRefGoogle Scholar
  83. White NJ (1999) Delaying antimalarial drug resistance with combination chemotherapy. Parassitologia 41:301–308PubMedGoogle Scholar
  84. Wiesner J, Hintz M, Altincicek B, Sanderbrand S, Weidemeyer C, Beck E, Jomaa H (2000) Plasmodium falciparum: Detection of the deoxyxylulose 5-phosphate reductoisomerase activity. Exp Parasitol 96:182–186PubMedCrossRefGoogle Scholar
  85. Wiesner J, Borrmann S, Jomaa H (2003) Fosmidomycin for the treatment of malaria. Parasitol Res 90:S71–S76PubMedCrossRefGoogle Scholar
  86. Wiesner J, Henschker D, Hutchinson DB, Beck E, Jomaa H (2002) In vitro and in vivo synergy of fosmidomycin, a novel antimalarial drug, with clindamycin. Antimicrob. Agents Chemother 46:2889–2894PubMedCrossRefGoogle Scholar
  87. Wiesner J, Sanderbrand S, Altincicek B, Beck E, Jomaa H (2001) Seeking new targets for antiparasitic agents. TRENDS Parasitol 17:7–8PubMedCrossRefGoogle Scholar
  88. Wilson RJM (2002) Progress with parasite plastids. J Mol Biol 319:257–274PubMedGoogle Scholar
  89. Wilson RJM, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172PubMedGoogle Scholar
  90. Yeo EAT, Edstein MD, Shanks GD, Rieckmann KH (1997) Potentiation of the antimalarial activity of atovaquone by doxycycline against Plasmodium falciparum in vitro. Parasitol Res 83:489–491PubMedCrossRefGoogle Scholar
  91. Zhu G, Marchewka MJ, Woods KM, Upton SJ, Keithly JS (2000) Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum. Mol Biochem Parasitol 105:253–260PubMedCrossRefGoogle Scholar
  92. Zuther E, Johnson JJ, Haselkorn R, McLeod R, Gornicki P (1999) Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc Natl Acad Sci USA 96:13387–13392PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. Sato
    • 1
  • R. J. M. Wilson
    • 1
  1. 1.National Institute for Medical ResearchMill Hill, LondonUK

Personalised recommendations