Quinolines and Artemisinin: Chemistry, Biology and History

  • P. G. Bray
  • S. A. Ward
  • P. M. O’Neill
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 295)


Plasmodium falciparum is the most important parasitic pathogen in humans, causing hundreds of millions of malaria infections and millions of deaths each year. At present there is no effective malaria vaccine and malaria therapy is totally reliant on the use of drugs. New drugs are urgently needed because of the rapid evolution and spread of parasite resistance to the current therapies. Drug resistance is one of the major factors contributing to the resurgence of malaria, especially resistance to the most affordable drugs such as chloroquine. We need to fully understand the antimalarial mode of action of the existing drugs and the way that the parasite becomes resistant to them in order to design and develop the new therapies that are so urgently needed. In respect of the quinolines and artemisinins, great progress has been made recently in studying the mechanisms of drug action and drug resistance in malaria parasites. Here we summarize from a historical, biological and chemical, perspective the exciting new advances that have been made in the study of these important antimalarial drugs.


Antimalarial Activity Translationally Control Tumour Protein Artemisinin Derivative Chloroquine Resistance Digestive Vacuole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdin MZ, Israr M, Rehman RU, Jain SK (2003) Artemisinin, a novel antimalarial drug: Biochemical and molecular approaches for enhanced production. Planta Medica 69:289–299PubMedCrossRefGoogle Scholar
  2. Avery MA, Alvim-Gaston M, Vroman JA, Wu B, Ager A, Peters W, Robinson BL, Charman W (2002) Structure-activity relationships of the antimalarial agent artemisinin. 7. Direct modification of (+)-artemisinin and in vivo antimalarial screening of new, potential preclinical antimalarial candidates. J Med Chem 45:4321–4335PubMedCrossRefGoogle Scholar
  3. Avery MA, Gao F, Mehrotra S, Chong WKM, Milhous WK (1994) Structure-activity-relationships of antimalarial agent artemisinin by comparative molecular-field analysis. Abstracts of Papers of the American Chemical Society 208:43-MEDIGoogle Scholar
  4. Avery MA, Jenningswhite C, Chong WKM (1989) Synthesis of a C,D-ring fragment of artemisinin. J Org Chem 54:1789–1792CrossRefGoogle Scholar
  5. Bachi MD, Korshin EE, Hoos R, Szpilman AM, Ploypradith P, Xie SJ, Shapiro TA, Posner GH (2003) A short synthesis and biological evaluation of potent and nontoxic antimalarial bridged bicyclic beta-sulfonyl-endoperoxides. J Med Chem 46:2516–2533PubMedCrossRefGoogle Scholar
  6. Banerjee R, Francis SE, Goldberg DE (2003) Food vacuole plasmepsins are processed at a conserved site by an acidic convertase activity in Plasmodium falciparum. Mol Biochem Parasitol 129:157–165PubMedCrossRefGoogle Scholar
  7. Barlin GB, Ireland SJ, Nguyen TMT, Kotecka B, Rieckmann KH (1993) Potential Antimalarials.18. Some mono-mannich and di-mannich bases of 3–7-chloro(and trifluoromethyl)quinolin-4-ylamino phenol. Austra J Chem 46:1685–1693Google Scholar
  8. Barradell LB and Fitton A (1995) Artesunate—a review of its pharmacology and therapeutic efficacy in the treatment of malaria. Drugs 50:714–741PubMedCrossRefGoogle Scholar
  9. Bendrat K, Berger BJ, Cerami A (1995) Heme polymerization in malaria. Nature 378:138–138PubMedCrossRefGoogle Scholar
  10. Berger BJ, Bendrat K, Cerami A (1995) High-performance liquid-chromatographic analysis of biological and chemical heme polymerization. Anal Biochem 231:151–156PubMedCrossRefGoogle Scholar
  11. Berman PA, Adams PA (1997) Artemisinin enhances heme-catalysed oxidation of lipid membranes. Free Rad Biol Med 22:1283–1288PubMedCrossRefGoogle Scholar
  12. Bhisutthibhan J, Meshnick SR (2001) Immunoprecipitation of H-3 dihydroartemisinin translationally controlled tumor protein (TCTP) adducts from Plasmodium falciparum-infected erythrocytes by using anti-TCTP antibodies. Antimicrobial Agents Chemother 45:2397–2399CrossRefGoogle Scholar
  13. Bhisutthibhan J, Pan XQ, Hossler PA, Walker DJ, Yowell CA, Carlton J, Dame JB, Meshnick SR (1998) The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem 273:16192–16198PubMedCrossRefGoogle Scholar
  14. Borstnik K, Paik IH, Shapiro TA, Posner GH (2002) Antimalarial chemotherapeutic peroxides: artemisinin, yingzhaosu A and related compounds. Int J Parasitol 32:1661–1667PubMedCrossRefGoogle Scholar
  15. Boss C, Richard-Bildstein S, Weller T, Fischli W, Meyer S, Binkert C (2003) Inhibitors of the Plasmodium falciparum parasite aspartic protease plasmepsin II as potential antimalarial agents. Curr Med Chem 10:883–907PubMedCrossRefGoogle Scholar
  16. Bray PG, Janneh O, Raynes KJ, Mungthin M, Ginsburg H, Ward SA (1999) Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum. J Cell Biol 145:363–376PubMedCrossRefGoogle Scholar
  17. Bray PG, Mungthin M, Ridley RG, Ward SA (1998) Access to hematin: The basis of chloroquine resistance. Mol Pharmacol 54:170–179PubMedGoogle Scholar
  18. Bray PG, Ward SA (1998) A comparison of the phenomenology and genetics of multidrug resistance in cancer cells and quinoline resistance in Plasmodium falciparum. Pharmacol Therapeutics 77:1–28CrossRefGoogle Scholar
  19. Brewer TG, Grate SJ, Peggins JO, Weina PJ, Petras JM, Levine BS, Heiffer MH, Schuster BG (1994) Fatal neurotoxicity of arteether and artemether. Am J Trop Med Hygiene 51:251–259Google Scholar
  20. Buller R, Peterson ML, Almarsson O, Leiserowitz L (2002) Quinoline binding site on malaria pigment crystal: A rational pathway for antimalaria drug design. Crystal Growth Design 2:553–562CrossRefGoogle Scholar
  21. Butler AR, Gilbert BC, Hulme P, Irvine LR, Renton L, Whitwood AC (1998) EPR evidence for the involvement of free radicals in the iron-catalysed decomposition of qinghaosu (Artemisinin) and some derivatives; antimalarial action of some polycyclic endoperoxides. Free Rad Res 28:471–476CrossRefGoogle Scholar
  22. Butler AR, Wu YL (1992) Artemisinin (Qinghaosu) — a new type of antimalarial drug. Chem Soc Rev 21:85–90CrossRefGoogle Scholar
  23. Cazelles J, Robert A, Meunier B (2001) Alkylation of heme by artemisinin, an antimalarial drug. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie 4:85–89CrossRefGoogle Scholar
  24. Chong CR, Sullivan DJ (2003) Inhibition of heme crystal growth by antimalarials and other compounds: implications for drug discovery. Biochem Pharmacol 66:2201–2212PubMedCrossRefGoogle Scholar
  25. De DY, Byers LD, Krogstad DJ (1997) Antimalarials: synthesis of 4-aminoquinolines that circumvent drug resistance in malaria parasites. J Heterocyclic Chem 34:315–320CrossRefGoogle Scholar
  26. Dechy-Cabaret O, Benoit-Vical F, Robert A, Meunier B (2000) Preparation and antimalarial activities of ‘trioxaquines’, new modular molecules with a trioxane skeleton linked to a 4-aminoquinoline. Chembiochem 1:281–283PubMedCrossRefGoogle Scholar
  27. Dechy-Cabaret O, Benoit-Vical F, Robert A, Meunier B (2001) Preparation and antimalarial activities of 4-trioxaquines, new modular molecules with a trioxane skeleton linked to a 4-aminoquinoline. Actualite Chimique 9–11Google Scholar
  28. Delarue S, Girault S, Maes L, Debreu-Fontaine MA, Labaeid M, Grellier P, Sergheraert C (2001) Synthesis and in vitro and in vivo antimalarial activity of new 4-anilinoquinolines. J Med Chem 44:2827–2833PubMedCrossRefGoogle Scholar
  29. Diribe CO and Warhurst DC (1985) A study of the uptake of chloroquine in malaria-infected erythrocytes—high and low affinity uptake and the influence of glucose and its analogs. Biochem Pharmacol 34:3019–3027PubMedCrossRefGoogle Scholar
  30. Dorn A, Vippagunta SR, Matile H, Bubendorf A, Vennerstrom JL, Ridley RG (1998a) A comparison and analysis of several ways to promote haematin (haem) polymerisation and an assessment of its initiation in vitro. Biochem Pharmacol 55:737–747PubMedCrossRefGoogle Scholar
  31. Dorn A, Vippagunta SR, Matile H, Jaquet C, Vennerstrom JL and Ridley RG (1998b) An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochem Pharmacol 55:727–736PubMedCrossRefGoogle Scholar
  32. Dua M, Raphael P, Sijwali PS, Rosenthal PJ, Chishti AH, Hanspal M (2000) Falcipain-2: Molecular cloning and characterization of Plasmodium falciparum cysteine protease that cleaves erythrocyte ankyrin and protein 4.1. Blood 96:946Google Scholar
  33. Eckstein-Ludwig U, Webb RJ, van Goethem IDA, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961PubMedCrossRefGoogle Scholar
  34. Egan TJ (2002) Physico-chemical aspects of hemozoin (malaria pigment) structure and formation. J Inorg Biochem 91:19–26PubMedCrossRefGoogle Scholar
  35. Egan TJ, Mavuso WW, Ncokazi KK (2001) The mechanism of beta-hematin formation in acetate solution, parallels between hemozoin formation and biomineralization processes. Biochemistry 40:204–213PubMedCrossRefGoogle Scholar
  36. Famin O, Ginsburg H (2002) Differential effects of 4-aminoquinoline-containing antimalarial drugs on hemoglobin digestion in Plasmodium falciparum-infected erythrocytes. Biochem Pharmacol 63:393–398PubMedCrossRefGoogle Scholar
  37. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LMB, Sidhu ABS, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE (2000) Mutations in the P-falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Molecular Cell 6:861–871PubMedCrossRefGoogle Scholar
  38. Fitch CD (1969) A Mechanism for Chloroquine Resistance in Malaria. J Lab Clin Med 74:872-&Google Scholar
  39. Fitch CD (1970) Plasmodium falciparum in owl monkeys—drug resistance and chloroquine binding capacity. Science 169:289-&PubMedCrossRefGoogle Scholar
  40. Fitch CD, Cai GZ, Chen YF, Shoemaker JD (1999) Involvement of lipids in ferriprotoporphyrin IX polymerization inmalaria. Biochimica Biophysica Acta—Mol Basis Dis 1454:31–37CrossRefGoogle Scholar
  41. Fitch CD, Cai GZ, Shoemaker JD(2000) A role for linoleic acid in erythrocytes infected with plasmodium berghei. Biochimica Biophysica Acta—Mol Basis Dis 1535:45–49CrossRefGoogle Scholar
  42. Fitch CD, Chevli R, Gonzalez Y (1974) Chloroquine accumulation by erythrocytes—latent capability. Life Sci 14:2441–2446PubMedCrossRefGoogle Scholar
  43. Fitch CD, Kanjananggulpan P (1987) The state of ferriprotoporphyrin-IX in malaria pigment. J Biol Chem 262:15552–15555PubMedGoogle Scholar
  44. Foley M, Tilley L (1998) Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 79:55–87PubMedCrossRefGoogle Scholar
  45. Goldberg DE, Slater AFG (1992) The pathway of hemoglobin degradation in malaria parasites. Parasitol Today 8:280–283PubMedCrossRefGoogle Scholar
  46. Grace JM, Aguilar AJ, Trotman KM, Peggins JO, Brewer TG (1998) Metabolism of betaarteether to dihydroqinghaosu by human liver microsomes and recombinant cytochrome P450 (vol 26, pg 313, 1998). Drug Metab Disposition 26:704–704Google Scholar
  47. Hawley SR, Bray PG, Mungthin M, Atkinson JD, O’Neill PM, Ward SA (1998) Relationship between antimalarial drug activity, accumulation, and inhibition of heme polymerization in Plasmodium falciparum in vitro. Antimicrobial Agents Chemother 42:682–686Google Scholar
  48. Hawley SR, Bray PG, Oneill PM, Park BK, Ward SA (1996) The role of drug accumulation in 4-aminoquinoline antimalarial potency—The influence of structural substitution and physicochemical properties. Biochem Pharmacol 52:723–733PubMedCrossRefGoogle Scholar
  49. Haynes RK (2001) Artemisinin and derivatives: the future formalaria treatment? Curr Opin Infect Dis 14:719–726PubMedGoogle Scholar
  50. Haynes RK, Chan HW, Cheung MK, Chung ST, La WL, Tsang HW, Voerste A, Williams ID (2003a) Stereoselective preparation of 10 alpha-and 10 beta-aryl derivatives of dihydroartemisinin. Eur J Org Chem:2098–2114Google Scholar
  51. Haynes RK, Chan HW, Cheung MK, Chung ST and Tsang HW (2000) C-10 Halogen, amino and carbon substituted derivatives of artemisinin for treatment of malaria, coccidiosis and neosporosis, in PCT Int. App. WO 2000004024 A1Google Scholar
  52. Haynes RK, Monti D, Taramelli D, Basilico N, Parapini S, Olliaro P (2003b) Artemisinin and heme— Authors’ reply. Antimicrob Agents Chemother 47:2712–2713CrossRefGoogle Scholar
  53. Haynes RK, Monti D, Taramelli D, Basilico N, Parapini S, Olliaro P (2003c) Artemisinin antimalarials do not inhibit hemozoin formation. Antimicrob Agents Chemother 47:1175–1175PubMedCrossRefGoogle Scholar
  54. Haynes RK, Pai HHO and Voerste A (1999) Ring opening of artemisinin (qinghaosu) and dihydroartemisinin and interception of the open hydroperoxides with formation of N-oxides—A chemical model for antimalarial mode of action. Tetrahedron Lett 40:4715–4718CrossRefGoogle Scholar
  55. Haynes RK, Vonwiller SC (1996a) The behaviour of qinghaosu (artemisinin) in the presence of heme Iron(II) and (III). Tetrahedron Lett 37:253–256CrossRefGoogle Scholar
  56. Haynes RK, Vonwiller SC (1996b) The behaviour of qinghaosu (artemisinin) in the presence of non-heme Iron(II) and (III). Tetrahedron Lett 37:257–260CrossRefGoogle Scholar
  57. Hempelmann E, Egan TJ (2002) Pigment biocrystallization in Plasmodium falciparum. Trends Parasitol 18:11–11PubMedCrossRefGoogle Scholar
  58. Hempelmann E, Motta C, Hughes R, Ward SA, Bray PG (2003) Plasmodium falciparum: sacrificing membrane to grow crystals? Trends Parasitol 19:23–26PubMedCrossRefGoogle Scholar
  59. Hien TT, Turner GDH, Mai NTH, Phu NH, Bethell D, Blakemore WF, Cavanagh JB, Dayan A, Medana I, Weller RO, Day NPJ, White NJ (2003) Neuropathological assessment of artemether-treated severe malaria. Lancet 362:295–296PubMedCrossRefGoogle Scholar
  60. Hindley S, Ward SA, Storr RC, Searle NL, Bray PG, Park BK, Davies J, O’Neill PM (2002) Mechanism-based design of parasite-targeted artemisinin derivatives: Synthesis and antimalarial activity of new diamine containing analogues. J Med Chem 45:1052–1063PubMedCrossRefGoogle Scholar
  61. Hofheinz W, Burgin H, Gocke E, Jaquet C, Masciadri R, Schmid G, Stohler H, Urwyler H (1994) Ro-42-1611-(Arteflene), a new effective antimalarial—chemical-structure and biological-activity. Trop Med Parasitol 45:261–265PubMedGoogle Scholar
  62. Homewood CA, Warhurst DC, Baggaley VC, Peters W (1972) Lysosomes, pH and anti-malarial action of chloroquine. Nature 235:50-PubMedCrossRefGoogle Scholar
  63. Hong YL, Yang YZ, Meshnick SR (1994) The interaction of artemisinin with malarial hemozoin. Mol Biochem Parasitol 63:121–128PubMedCrossRefGoogle Scholar
  64. Idowu OR, Lin AJ, Grace JM, Peggins JO(1997) Biomimetic metabolism of artelinic acid by chemical cytochrome P-450 model systems. Pharmaceutical Res 14:1449–1454CrossRefGoogle Scholar
  65. Jefford CW (2001) Why artemisinin and certain synthetic peroxides are potent antimalarials. Implications for the mode of action. Curr Med Chem 8:1803–1826PubMedGoogle Scholar
  66. Jefford CW, Kohmoto S, Jaggi D, Timari G, Rossier JC, Rudaz M, Barbuzzi O, Gerard D, Burger U, Kamalaprija P, Mareda J, Bernardinelli G, Manzanares I, Canfield CJ, Fleck SL, Robinson BL, Peters W (1995) Synthesis, structure, and antimalarial activity of some enantiomerically pure, cis-fused cyclopenteno-1,2,4-trioxanes. Helvetica Chimica Acta 78:647–662CrossRefGoogle Scholar
  67. Jefford CW, Vicente MGH, Jacquier Y, Favarger F, Mareda J, MillassonSchmidt P, Brunner G, Burger U (1996) The deoxygenation and isomerization of artemisinin and artemether and their relevance to antimalarial action. Helvetica Chimica Acta 79:1475–1487CrossRefGoogle Scholar
  68. Jewell H, Maggs JL, Harrison AC, O’Neill PM, Ruscoe JE, Park BK (1995) Role of hepatic-metabolism in the bioactivation and detoxication of amodiaquine. Xenobiotica 25:199–217PubMedCrossRefGoogle Scholar
  69. Jung M, Lee K, Jung H (2001) First synthesis of (+)-deoxoartemisitene and its novel C-11 derivatives. Tetrahedron Lett 42:3997–4000CrossRefGoogle Scholar
  70. Jung M, Lee S (1998) A concise synthesis of novel aromatic analogs of artemisinin. Heterocycles 48:2219–2219Google Scholar
  71. Kapetanaki S, Varotsis C (2000) Ferryl-oxo heme intermediate in the antimalarial mode of action of artemisinin. FEBS Lett 474:238–241PubMedCrossRefGoogle Scholar
  72. Kapetanaki S, Varotsis C (2001) Fourier transform infrared investigation of non-heme Fe(III) and Fe(II) decomposition of artemisinin and of a simplified trioxane alcohol. J Med Chem 44:3150–3156PubMedCrossRefGoogle Scholar
  73. Kaschula CH, Egan TJ, Hunter R, Basilico N, Parapini S, Taramelli D, Pasini E, Monti D (2002) Structure-activity relationships in 4-aminoquinoline antiplasmodials. The role of the group at the 7-position. J Med Chem 45:3531–3539PubMedCrossRefGoogle Scholar
  74. Kim HS, Begum E, Ogura N, Wataya Y, Nonami Y, Ito T, Masuyama A, Nojima M, McCullough KJ (2003) Antimalarial activity of novel 1,2,5,6-tetraoxacycloalkanes and 1,2,5-trioxacycloalkanes. J Med Chem 46:1957–1961PubMedCrossRefGoogle Scholar
  75. Klayman DL (1985) Qinghaosu (Artemisinin)—an antimalarial drug from China. Science 228:1049–1055PubMedCrossRefGoogle Scholar
  76. Klayman DL, Lin AJ, Acton N, Scovill JP, Hoch JM, Milhous WK, Theoharides AD (1984) Isolation of Artemisinin Qinghaosu) from Artemisia annua growing in the United States. J Natural Prod 47:715–717CrossRefGoogle Scholar
  77. Korshin EE, Hoos R, Szpilman AM, Konstantinovski L, Posner GH, Bachi MD (2002) An efficient synthesis of bridged-bicyclic peroxides structurally related to antimalarial yingzhaosu A based on radical co-oxygenation of thiols and monoterpenes. Tetrahedron 58:2449–2469CrossRefGoogle Scholar
  78. Kotecka BM, Barlin GB, Edstein MD, Rieckmann KH (1997) New quinoline di-Mannich base compounds with greater antimalarial activity than chloroquine, amodiaquine, or pyronaridine. Antimicrob Agents Chemother 41:1369–1374PubMedGoogle Scholar
  79. Leed A, DuBay K, Ursos LMB, Sears D, de Dios AC, Roepe PD (2002) Solution structures of antimalarial drug-heme complexes. Biochemistry 41:10245–10255PubMedCrossRefGoogle Scholar
  80. Lin AJ, Lee M, Klayman DL (1989) Antimalarial activity of new water-soluble dihydroartemisinin derivatives. 2. Stereospecificity of the ether side-chain. J Med Chem 32:1249–1252PubMedCrossRefGoogle Scholar
  81. Liu CZ, Guo C, Wang YC, Fan OY (2003) Factors influencing artemisinin production from shoot cultures of Artemisia annua L. World J Microbiol Biotechnol 19:535–538CrossRefGoogle Scholar
  82. Ma JY, Katz E, Ziffer H (1999) A new synthetic route to 10 beta-alkyldeoxoartemisinins. Tetrahedron Lett 40:8543–8545CrossRefGoogle Scholar
  83. Maggs JL, Madden S, Bishop LP, Oneill PM, Park BK (1997) The rat biliarymetabolites of dihydroartemisinin, an antimalarial endoperoxide. Drug Metab Disposition 25:1200–1204Google Scholar
  84. Martin SK, Oduola AMJ, Milhous WK (1987) Reversal of chloroquine resistance in Plasmodium falciparum by Verapamil. Science 235:899–901PubMedCrossRefGoogle Scholar
  85. McKeage K, Scott LJ (2003) Atovaquone/Proguanil—a review of its use for the prophylaxis of Plasmodium falciparum malaria. Drugs 63:597–623PubMedCrossRefGoogle Scholar
  86. Meshnick SR, Jefford CW, Posner GH, Avery MA, Peters W (1996) Second-generation antimalarial endoperoxides. Parasitol Today 12:79–82PubMedCrossRefGoogle Scholar
  87. Meshnick SR, Thomas A, Ranz A, Xu CM, Pan HZ (1991) Artemisinin (Qinghaosu) — the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol 49:181–190PubMedCrossRefGoogle Scholar
  88. Moreau S, Perly B, Biguet J (1982) Interactions between Chloroquine and Ferriprotoporphyrine.9. Nuclear Magnetic-Resonance Study. Biochimie 64:1015–1025PubMedCrossRefGoogle Scholar
  89. Moreau S, Perly B, Chachaty C, Deleuze C (1985) A nuclear magnetic-resonance study of the interactions of antimalarial-drugs with porphyrins. Biochimica et Biophysica Acta 840:107–116PubMedGoogle Scholar
  90. Mungthin M, Bray PG, Ridley RG, Ward SA (1998) Central role of hemoglobin degradation in mechanisms of action of 4-aminoquinolines, quinoline methanols, and phenanthrene methanols. Antimicrob Agents Chemother 42:2973–2977PubMedGoogle Scholar
  91. Naisbitt DJ, Williams DP, O’Neill PM, Maggs JL, Willock DJ, Pirmohamed M, Park BK (1998) Metabolism-dependent neutrophil cytotoxicity of amodiaquine: A comparison with pyronaridine and related antimalarial drugs. Chem Res Toxicol 11:1586–1595PubMedCrossRefGoogle Scholar
  92. O’Neill PM, Bishop LPD, Searle NL, Maggs JL, Storr RC, Ward SA, Park BK, Mabbs F (2000) Biomimetic Fe(II)-mediated degradation of arteflene (Ro-42-1611). The first EPR spin-trapping evidence for the previously postulated secondary carbon-centered cyclohexyl radical. J Org Chem 65:1578–1582PubMedCrossRefGoogle Scholar
  93. O’Neill PM, Bray PG, Hawley SR, Ward SA, Park BK (1998) 4-aminoquinolines—past, present, and future: A chemical perspective. Pharmacol Therapeutics 77:29–58CrossRefGoogle Scholar
  94. O’Neill PM, Harrison AC, Storr RC, Hawley SR, Ward SA, Park BK (1994) The effect of fluorine substitution on the metabolism and antimalarial activity of amodiaquine. J Med Chem 37:1362–1370PubMedCrossRefGoogle Scholar
  95. O’Neill PM, Hawley SR, Storr RC, Ward SA, Park BK (1996) The effect of fluorine substitution on the antimalarial activity of tebuquine. Bioorg Med Chem Lett 6:391–392CrossRefGoogle Scholar
  96. O’Neill PM, Miller A, Bishop LPD, Hindley S, Maggs JL, Ward SA, Roberts SM, Scheinmann F, Stachulski AV, Posner GH, Park BK (2001a) Synthesis, antimalarial activity, biomimetic iron(II) chemistry, and in vivo metabolism of novel, potent C-10-phenoxy derivatives of dihydroartemisinin. J Med Chem 44:58–68PubMedCrossRefGoogle Scholar
  97. O’Neill PM, Mukhtar A, Stocks PA, Randle LE, Hindley S, Ward SA, Storr RC, Bickley JF, O’Neil IA, Maggs JL, Hughes RH, Winstanley PA, Bray PG, Park BK (2003) Isoquine and related amodiaquine analogues: A new generation of improved 4-aminoquinoline antimalarials. J Med Chem 46:4933–4945PubMedCrossRefGoogle Scholar
  98. O’Neill PM, Posner GH (2004) A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 47:2945–2964PubMedCrossRefGoogle Scholar
  99. O’Neill PM, Pugh M, Stachulski AV, Ward SA, Davies J, Park BK (2001b) Optimisation of the allylsilane approach to C-10 deoxo carba analogues of dihydroartemisinin: synthesis and in vitro antimalarial activity of new, metabolically stable C-10 analogues. J Chem Soc-Perkin Transact 1:2682–2689CrossRefGoogle Scholar
  100. O’Neill PM, Searle NL, Kan KW, Storr RC, Maggs JL, Ward SA, Raynes K, Park BK(1999) Novel, potent, semisynthetic antimalarial carba analogues of the first-generation 1,2,4-trioxane artemether. J Med Chem 42:5487–5493PubMedCrossRefGoogle Scholar
  101. O’Neill PM, Willock DJ, Hawley SR, Bray PG, Storr RC, Ward SA, Park BK (1997) Synthesis, antimalarial activity, and molecular modeling of tebuquine analogues. J Med Chem 40:437–448PubMedCrossRefGoogle Scholar
  102. Olliaro PL, Haynes RK, Meunier B, Yuthavong Y (2001a) Possible modes of action of the artemisinin-type compounds. Trends Parasitol 17:122–126PubMedCrossRefGoogle Scholar
  103. Olliaro PL, Haynes RK, Meunier RK, Meunier B, Yuthavong Y (2001b) Radical mechanism of action of the artemisinin-type compounds—Response. Trends Parasitol 17:267–268CrossRefGoogle Scholar
  104. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) The structure of malaria pigment beta-haematin. Nature 404:307–310PubMedCrossRefGoogle Scholar
  105. Pandey AV, Tekwani BL, Singh RL, Chauhan VS (1999) Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem 274:19383–19388PubMedCrossRefGoogle Scholar
  106. Peters W, Robinson BL, Rossier JC, Misra D, Jefford CW (1993a) The chemotherapy of rodent malaria.49. The activities of some synthetic 1,2,4-trioxanes against chloroquine-sensitive and chloroquine-resistant parasites.2. Structure-activity studies on cis-fused cyclopenteno-1,2,4-trioxanes (fenozans) against drug-sensitive and drug-resistant lines of Plasmodium berghei and P. Yoelii Ssp Ns in vivo. Annals Trop Med Parasitol 87:221–221Google Scholar
  107. Peters W, Robinson BL, Tovey G, Rossier JC, Jefford CW (1993b) The chemotherapy of rodent malaria.50. The activities of some synthetic 1,2,4-trioxanes against chloroquine-sensitive and chloroquine-resistant parasites.3. Observations on fenozan-50f, a difluorinated 3,3′-spirocyclopentane 1,2,4-trioxane. Annals Trop Med Parasitol 87:111–123Google Scholar
  108. Posner GH, Cumming JN, Ploypradith P, Chang HO (1995) Evidence for Fe(Iv)=O in the Molecular Mechanism of Action of the Trioxane Antimalarial Artemisinin. J Am Chem Soc 117:5885–5886CrossRefGoogle Scholar
  109. Posner GH, Cumming JN, Woo SH, Ploypradith P, Xie SJ, Shapiro TA (1998) Orally active antimalarial 3-substituted trioxanes: New synthetic methodology and biological evaluation. J Med Chem 41:940–951PubMedCrossRefGoogle Scholar
  110. Posner GH, Meshnick SR (2001) Radical mechanism of action of the artemisinin-type compounds. Trends Parasitol 17:266–267PubMedCrossRefGoogle Scholar
  111. Posner GH, O’Neill PM (2004) Knowledge of the proposed chemical mechanism of action and cytochrome P450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial. Acc Chem Res 37:397–404PubMedCrossRefGoogle Scholar
  112. Posner GH, Oh CH (1992) A regiospecifically O-18 labeled 1,2,4-trioxane—a simple chemical-model system to probe the mechanism(s) for the antimalarial activity of artemisinin (Qinghaosu). J Am Chem Soc 114:8328–8329CrossRefGoogle Scholar
  113. Posner GH, Oh CH, Wang DS, Gerena L, Milhous WK, Meshnick SR, Asawamahasadka W (1994) Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin—the importance of a carbon-centered radical for antimalarial activity. J Med Chem 37:1256–1258PubMedCrossRefGoogle Scholar
  114. Posner GH, Paik IH, Sur S, McRiner AJ, Borstnik K, Xie SJ, Shapiro TA (2003) Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high stability and efficacy. J Med Chem 46:1060–1065PubMedCrossRefGoogle Scholar
  115. Posner GH, Park SB, Gonzalez L, Wang DS, Cumming JN, Klinedinst D, Shapiro TA, Bachi MD (1996) Evidence for the importance of high-valent Fe=O and of a diketone in the molecular mechanism of action of antimalarial trioxane analogs of artemisinin. J Am Chem Soc 118:3537–3538CrossRefGoogle Scholar
  116. Posner GH, Parker MH, Northrop J, Elias JS, Ploypradith P, Xie SJ, Shapiro TA (1999) Orally active, hydrolytically stable, semisynthetic, antimalarial trioxanes in the artemisinin family. J Med Chem 42:300–304PubMedCrossRefGoogle Scholar
  117. Pu YM, Ziffer H (1995) Synthesis and antimalarial activities of 12-beta-allyldeoxoartemisinin and its derivatives. J Med Chem 38:613–616PubMedCrossRefGoogle Scholar
  118. Raynes KJ, Stocks PA, O’Neill PM, Park BK, Ward SA (1999) New 4-aminoquinoline mannich base antimalarials. 1. Effect of an alkyl substituent in the 5′-position of the 4′-hydroxyanilino side chain. J Med Chem 42:2747–2751PubMedCrossRefGoogle Scholar
  119. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403:906–909PubMedCrossRefGoogle Scholar
  120. Ridley RG, Hofheinz W, Matile H, Jaquet C, Dorn A, Masciadri R, Jolidon S, Richter WF, Guenzi A, Girometta MA, Urwyler H, Huber W, Thaithong S, Peters W (1996) 4-aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquine-resistant Plasmodium falciparum. Antimicrob Agents Chemother 40:1846–1854PubMedGoogle Scholar
  121. Robert A, Boularan M, Meunier B (1997) Interaction of artemisinin (qinghaosu) with the tetraphenylporphyrinatomanganese(II) complex. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule B-Mecanique Physique Chimie Astronomie 324:59–66CrossRefGoogle Scholar
  122. Robert A, Cazelles J, Meunier B (2001) Characterization of the alkylation product of heme by the antimalarial drug artemisinin. Angewandte Chemie-International Edition 40:1954–1957CrossRefGoogle Scholar
  123. Robert A, Dechy-Cabaret O, Cazelles J, Meunier B (2002) From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. Acc Chem Res 35:167–174PubMedCrossRefGoogle Scholar
  124. Robert A, Meunier B (1998) Is alkylation the main mechanism of action of the antimalarial drug artemisinin? Chem Soc Rev 27:273–279CrossRefGoogle Scholar
  125. Ruscoe JE, Tingle MD, O’Neill PM, Ward SA, Park BK (1998) Effect of disposition of Mannich antimalarial agents on their pharmacology and toxicology. Antimicrob Agents Chemother 42:2410–2416PubMedGoogle Scholar
  126. Sidhu ABS, Verdier-Pinard D, Fidock DA (2002) Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by PfCRT mutations. Science 298:210–213PubMedCrossRefGoogle Scholar
  127. Silamut K, Newton PN, Teja-Isavadharm P, Suputtamongkol Y, Siriyanonda D, Rasameesoraj M, Pukrittayakamee S, White NJ (2003) Artemether bioavailability after oral or intramuscular administration in uncomplicated falciparum malaria. Antimicrob Agents Chemother 47:3795–3798PubMedCrossRefGoogle Scholar
  128. Slater AFG (1992) Malaria Pigment. Exp Parasitol 74:362–365PubMedCrossRefGoogle Scholar
  129. Slater AFG, Cerami A (1992) Inhibition by chloroquine of a novel heme polymerase enzyme-activity in malaria trophozoites. Nature 355:167–169PubMedCrossRefGoogle Scholar
  130. Slater AFG, Swiggard WJ, Orton BR, Flitter WD, Goldberg DE, Cerami A, Henderson GB (1991) An iron carboxylate bond links the heme units of malaria pigment. Proc Natl Acad Sci USA 88:325–329PubMedCrossRefGoogle Scholar
  131. Stocks PA, Raynes KJ, Bray PG, Park BK, O’Neill PM, Ward SA (2002) Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum. J Med Chem 45:4975–4983PubMedCrossRefGoogle Scholar
  132. Sullivan DJ (2002) Theories on malarial pigment formation and quinoline action. Int J Parasitol 32:1645–1653PubMedCrossRefGoogle Scholar
  133. Tang YQ, Dong YX, Vennerstrom JL (2004) Synthetic peroxides as antimalarials. Med Res Rev 24:425–448PubMedCrossRefGoogle Scholar
  134. Teja-Isavadharm P, Watt G, Eamsila C, Jongsakul K, Li QG, Keeratithakul D, Sirisopana N, Luesutthiviboon L, Brewer TG, Kyle DE (2001) Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated falciparum malaria. Am J Trop Med Hyg 65:717–721PubMedGoogle Scholar
  135. Tingle MD, Jewell H, Maggs JL, Oneill PM, Park BK (1995) The bioactivation of amodiaquine by human polymorphonuclear leukocytes in vitro—chemical mechanisms and the effects of fluorine substitution. Biochem Pharmacol 50:1113–1119PubMedCrossRefGoogle Scholar
  136. Ursos LMB, Roepe PD (2002) Chloroquine resistance in the malarial parasite, Plasmodium falciparum. Med Res Rev 22:465–491PubMedCrossRefGoogle Scholar
  137. Vattanaviboon P, Siritanaratkul N, Ketpirune J, Wilairat P, Yuthavong Y (2002) Membrane heme as a host factor in reducing effectiveness of dihydroartemisinin. Biochem Pharmacol 64:91–98PubMedCrossRefGoogle Scholar
  138. Vennerstrom JL, Ager AL, Dorn A, Andersen SL, Gerena L, Ridley RG, Milhous WK (1998) Bisquinolines. 2. Antimalarial N,N-bis(7-chloroquinolin-4-yl)heteroalkanediamines. J Med Chem 41:4360–4364PubMedCrossRefGoogle Scholar
  139. Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FCK, Chollet J, Dong YX, Dorn A, Hunziger D, Matile H, McIntosh K, Padmanilayam M, Thomas JS, Scheurer C, Scorneaux B, Tang YQ, Urwyler H, Wittlin S, Charman WN (2004) Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430(7002):900–904PubMedCrossRefGoogle Scholar
  140. Vennerstrom JL, Dong YX, Andersen SL, Ager AL, Fu HN, Miller RE, Wesche DL, Kyle DE, Gerena L, Walters SM, Wood JK, Edwards G, Holme AD, McLean WG, Milhous WK (2000) Synthesis and antimalarial activity of sixteen dispiro-1,2,4,5-tetraoxanes: Alkyl-substituted 7,8,15,16-tetraoxadispiro hexadecanes. J Med Chem 43:2753–2758PubMedCrossRefGoogle Scholar
  141. Vennerstrom JL, Dong YX, Chollet J, Matile H (2002) Spiro and dispiro 1,2,4-trioxolane antimalarials. United States Patent, Medicines for Malaria Venture (MMV), US 6,486,199 B1Google Scholar
  142. Verdier F, Clavier F, Deloron P, Blayo MC (1984) Distribution of chloroquine and desethyl-chloroquine in blood, plasma and erythrocytes of healthy and malarial subjects—HPLC assay. Pathologie Biologie 32:359–361PubMedGoogle Scholar
  143. Verdier F, Lebras J, Clavier F, Hatin I, Blayo MC (1985) Chloroquine uptake by Plasmodium falciparum infected human erythrocytes during in vitro culture and its relationship to chloroquine resistance. Antimicrob Agents Chemother 27:561–564PubMedGoogle Scholar
  144. Vippagunta SR, Dorn A, Matile H, Bhattacharjee AK, Karle JM, Ellis WY, Ridley RG, Vennerstrom JL (1999) Structural specificity of chloroquine-hematin binding related to inhibition of hematin polymerization and parasite growth. JMed Chem 42:4630–4639CrossRefGoogle Scholar
  145. Vippagunta SR, Dorn A, Ridley RG, Vennerstrom JL (2000) Characterization of chloroquine-hematin mu-oxo dimer binding by isothermal titration calorimetry. Biochimica Et Biophysica Acta—General Subjects 1475:133–140CrossRefGoogle Scholar
  146. Vroman JA, Alvim-Gaston M, Avery MA (1999) Current progress in the chemistry, medicinal chemistry and drug design of artemisinin based antimalarials. Curr Pharmaceutical Des 5:101–138Google Scholar
  147. Warhurst D (2001) New developments: Chloroquine-resistance in Plasmodium falciparum. Drug Resistance Updates 4:141–144PubMedCrossRefGoogle Scholar
  148. Wernsdorfer WH, Noedl H (2003) Molecular markers for drug resistance in malaria: use in treatment, diagnosis and epidemiology. Curr Opin Infect Dis 16:553–558PubMedCrossRefGoogle Scholar
  149. Wilson CM, Serrano AE, Wasley A, Bogenschutz MP, Shankar AH Wirth DF (1989) Amplification of a gene related to mammalian Mdr genes in drug-resistant Plasmodium falciparum. Science 244:1184–1186PubMedCrossRefGoogle Scholar
  150. Winstanley PA, Ward SA, Snow RW (2002) Clinical status and implications of antimalarial drug resistance. Microbes Infect 4:157–164PubMedCrossRefGoogle Scholar
  151. Wu WM, Wu YK, Wu YL, Yao ZJ, Zhou CM, Li Y, Shan F (1998) Unified mechanistic framework for the Fe(II)-induced cleavage of qinghaosu and derivatives/analogues. The first spin-trapping evidence for the previously postulated secondary C-4 radical. J Am Chem Soc 120:3316–3325CrossRefGoogle Scholar
  152. Wu YK (2002) How might qinghaosu (artemisinin) and related compounds kill the intraerythrocytic malaria parasite? A chemists view. Acc Chem Res 35:255–259PubMedCrossRefGoogle Scholar
  153. Yang YZ, Asawamahasakda W, Meshnick SR (1993) Alkylation of human albumin by the antimalarial artemisinin. Biochem Pharmacol 46:336–339PubMedCrossRefGoogle Scholar
  154. Yang YZ, Little B, Meshnick SR (1994) Alkylation of proteins by artemisinin—effects of heme, pH, and drug structure. Biochem Pharmacol 48:569–573PubMedGoogle Scholar
  155. Yayon A, Cabantchik ZI, Ginsburg H (1984) pH-Dependent sensitivity of human malaria parasites to chloroquine. J Protozool 31:A82–A83Google Scholar
  156. Yayon A, Cabantchik ZI, Ginsburg H (1985) Susceptibility of human malaria parasites to chloroquine is pH dependent. Proc Natl Acad Sci USA 82:2784–2788PubMedCrossRefGoogle Scholar
  157. Yayon A, Ginsburg H (1983) Chloroquine inhibits the degradation of endocytic vesicles in human malaria parasites. Cell Biol Int Rep 7:895–895PubMedCrossRefGoogle Scholar
  158. Zhang F, Gosser DK, Meshnick SR (1992) Hemin-catalyzed decomposition of artemisinin (Qinghaosu). Biochem Pharmacol 43:1805–1809PubMedCrossRefGoogle Scholar
  159. Zhang JM, Krugliak M, Ginsburg H (1999) The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol Biochem Parasitol 99:129–141PubMedCrossRefGoogle Scholar
  160. Zhou WS, Xu XX (1994) Total synthesis of the antimalarial sesquiterpene peroxide Qinghaosu and Yingzhaosu-A. Acc Chem Res 27:211–216CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. G. Bray
    • 1
  • S. A. Ward
    • 1
  • P. M. O’Neill
    • 2
  1. 1.Division of Molecular and Biochemical ParasitologyLiverpool School of Tropical MedicineLiverpoolUK
  2. 2.Department of Chemistry, The Robert Robinson LaboratoriesUniversity of LiverpoolLiverpoolUK

Personalised recommendations