Skip to main content

Cationic Order in Double Perovskite Oxide, Sr2Fe1−x ScxReO6 (x = 0.05, 0.1)

  • Conference paper
LACAME 2004

Abstract

We have synthesized by sol-gel method the following polycrystalline double perovskite samples: Sr2Fe1−x ScxReO6 (x = 0, 0.05, 0.1). The results of the Rietveld refinements presented single double perovskite phases with orthorhombic symmetry for the system Sr2Fe1−x ScxReO6, the differences in atomic radii between Fe3+ and Sc3+ cause a lowering in symmetry with respect to the parent Sr2FeReO6 tetragonal compound. The Curie temperatures are found at about 426 and 436 (±5) K for Sr2Fe0.9Sc0.1ReO6 and Sr2Fe0.9Sc0.05ReO6, respectively. The Mössbauer spectra measured at 77 K show complex hyperfine structures resulting from different magnetic contributions at Fe3+ sites; the average hyperfine field is estimated 50 T and the isomer shift at 0.5 mm/s. At room temperature an intermediate valence state for Fe is also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coey J. M. D., Viret M. and von Molnár S., Adv. Phys. 48 (1999), 167.

    Article  ADS  Google Scholar 

  2. Sleight A. W. and Ward R., J. Am. Chem. Soc. 83 (1961), 1088.

    Article  Google Scholar 

  3. Wolf S. A., Awschalom D. D., Buhrman R. A., Daughton J. M., von Molnar S., Roukes M. L., Chtkelkanova A. Y. and Treger D. M., Science 294 (2001), 1488.

    Article  ADS  Google Scholar 

  4. Anderson M. T., Greenwood K. B., Taylor G. A. and Poeppelmeier K. R., Prog. Solid State Chem. 22 (1993), 197.

    Article  Google Scholar 

  5. Bokov A. A., Protsenko N. P. and Ye Z.-G., J. Phys. Chem. Solids 61 (2000), 1519.

    Article  ADS  Google Scholar 

  6. Popov G., Lobanov M. V., Tsiper E. V., Greenblatt M., Caspi E. N., Borissov A., Kiryukhin V. and Lynn J. W., J. Phys., Condens. Matter 16 (2004), 135.

    Article  ADS  Google Scholar 

  7. Douvalis A. P., Venkatesan M., Coey J. M. D., Grafoute M., Greneche J. M. and Suryanarayanan R., J. Phys., Condens. Matter 14 (2002), 12611.

    Article  ADS  Google Scholar 

  8. Pinsart-Gaudart L., Surynarayanan R., Revcolevschi A., Rodriguez-Carvajal J., Greneche J. M., Smith P. A. I., Thomas R. M., Borges R. P. and Coey J. M. D., J. Appl. Phys. 87 (2000), 7118.

    Article  ADS  Google Scholar 

  9. Greneche J. M., Venkatesan M., Suryanarayanan R. and Coey J. M. D., Phys. Rev., B 63 (2001), 174403.

    Article  ADS  Google Scholar 

  10. Nakamura S., Ikezaki K., Nakagawa N., Shan Y. J. and Tanaka M., Hyperfine Interact. 141/142 (2002), 207.

    Article  ADS  Google Scholar 

  11. Teillet J. and Varret F., unpublished MOSFIT Program University of Le Mans.

    Google Scholar 

  12. Rietveld H. M., 2 (1969), 65.

    Google Scholar 

  13. Shannon R. D., Acta Crystallogr., Sect A A32 (1976), 751.

    ADS  Google Scholar 

  14. Arrott A., Phys. Rev. 108 (1957), 1394.

    Article  ADS  Google Scholar 

  15. Blanco J. J., Hernández T., Rodríguez-Martínez L. M., Insausti M., Barandiarán J. M., Greneche J. M. and Rojo T., J. Mater. Chem. 11 (2001), 253.

    Article  Google Scholar 

  16. Abe M., Nakagawa T. and Nomura S., J. Phys. Soc. Jpn. 35 (1973), 1360.

    Article  ADS  Google Scholar 

  17. Gopalakrishnan J., Chattopadhyay A., Ogale S. B., Venkatesan T., Greene R. L., Millis A. J., Ramesha K., Hannoyer B. and Marest G., Phys. Rev., B 62 (2000), 9538.

    Article  ADS  Google Scholar 

  18. Peña A., Gutierrez J., Rodriguez-Martinez L. M., Barandiarán J. M., Hernández T. and Rojo T., J. Magn. Magn. Mater. 254–255 (2003), 586.

    Article  Google Scholar 

  19. Gibb T. C., Battle P. D., Bollen S. K. and Whitehead R. J., J. Mater. Chem. 2 (1992), 111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Hernández, T., Plazaola, F., Barandiarán, J.M., Greneche, J.M. (2005). Cationic Order in Double Perovskite Oxide, Sr2Fe1−x ScxReO6 (x = 0.05, 0.1). In: Mercader, R.C., Gancedo, J.R., Cabral Prieto, A., Baggio-Saitovitch, E. (eds) LACAME 2004. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-28960-7_12

Download citation

Publish with us

Policies and ethics