Skip to main content

Summary

Vacuum mixing of bone cement has been used in cemented hip-joint replacement procedures for over two decades. Although literature on bone cement is voluminous, relatively few studies have reported the effects of vacuum-mixing methods on the cemented hip replacement. While it has been proven that vacuum mixing improves the mechanical properties of bone cement, other effects need to be clarified. This chapter discusses the effects of vacuum mixing on cement quality, cement homogeneity, the cement-prosthesis interface and the operating room environment. It also discussed vacuum mixing in terms of bone-cement shrinkage and antibiotic release in total hip replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas S, Clohisy JC, Abu-Amer Y (2003) Mitogen-activated protein (MAP) kinases mediate PMMA-induction of osteoclasts. J Orthop Res 21(6):1041–8

    Article  CAS  PubMed  Google Scholar 

  2. Adalberth G, Nilsson KG, Kattholm J, Hassander H (2002) Fixation of the tibial component using CMW-1 or Palacos bone cement with gentamicin: similar outcome in a randomized radiostereometric study of 51 total knee arthroplasties. Acta Orthop Scand 73(5):531–8

    Article  PubMed  Google Scholar 

  3. Adam K, Couch L, Cierny G, Calhoun J, Mader JT (1992) In vitro and in vivo evaluation of antibiiotic-impregnated polymethylmethacrylate beads. Clin Orthop 278:244–52

    Google Scholar 

  4. Alkire M, Dabezies E, Hastings P (1987) High Vacuum As a Method of Reducing Porosity of Polymethylmethacrylate. Othopaedics 10:1533–39

    CAS  Google Scholar 

  5. Askew MJ, Kufel MF, Fleissner Jr PR, Gradisar Jr IA, Salstrom SJ, Tan J (1990) Effect of vacuum mixing on the mechanical properties of antibiotic-impregnated polymethylmethacrylate bone cement. J Biomed Mater Res 24:573–80

    Article  CAS  PubMed  Google Scholar 

  6. Bettencourt A, Calado A, Amaral J, Vale FM, Rico JM, Monteiro J, Castro M (2001) The influence of vacuum mixing on methylmethacrylate liberation from acrylic cement powder. Int J Pharm 219:89–93

    Article  CAS  PubMed  Google Scholar 

  7. Bishop NE, Ferguson S, Tepic S (1996) Porosity reduction in bone cement at the cement-stem interface. J Bone Joint Surg (Br) 78(3):349–56

    CAS  Google Scholar 

  8. Buchhorn GH, Streicher RM, Willert HG (1992) Exposure of surgical/ orthopedic operating room personnel to monomer vapors during the use of bone cements—review of the literature and report of experiences. Biomed Tech (Berl) 37:293–302

    CAS  Google Scholar 

  9. Burke D, Gates E, Harris W (1984) Centrifugation as a method of improving tensile and fatigue properties of acrylic bone cement. J Bone Joint Surg (Am) 66:1265–73

    CAS  Google Scholar 

  10. Carter DR, Gates EI, Harris WH (1982) Strain controlled fatigue of acrylic bone cement. J Biomed Mater Res 16:647–657

    Article  CAS  PubMed  Google Scholar 

  11. Charnley J (1970) Low friction arthroplasty of the hip: theory and practice. Springer, Berlin Heidelberg New York

    Google Scholar 

  12. Darre E, Gottlieb J, Nielsen PM, Jensen JS (1988) A method to determine methylmethacrylate in air. Acta Orthop Scand 59:270–1

    CAS  PubMed  Google Scholar 

  13. Davies JP, Harris WH (1990) Optimization and comparison of three vacuum mixing systems for porosity reduction of Simplex P Cement. Clin Orthop 254:261–69

    PubMed  Google Scholar 

  14. Davies JP, Harris WH (1995) Comparison of diametral shrinkage of centrifuged and uncentrifuged Simplex P bone cement. J Appl Biomater 6(3):209–11

    Article  CAS  PubMed  Google Scholar 

  15. Davies JP, Kawate K, Harris WH (1995) Effect of interfacial porosity on the torsional strength of the cement-metal interface. 41st Annual Meetting Orthopedic Research Society, Orlando, FL, USA, p 713

    Google Scholar 

  16. Draenert K, Draenert Y, Garde U, Ulrich C (1999) Manual of cementing technique. Springer, Berlin, Heidelberg, New York, Tokyo, pp 26–28

    Google Scholar 

  17. Dunne N-J, Orr J (2001) Influence of mixing techniques on the physical properties of acrylic bone cement. Biomaterials 22:1819–26

    Article  CAS  PubMed  Google Scholar 

  18. Engesaeter LB, Lie SA, Espehaug B, Furnes O, Vollset SE, Havelin LI (2003) Antibiotic prophylaxis in total hip arthroplasty: effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0–14 years in the Norwegian Arthroplasty Register. Acta Orthop Scand 74(6):644–51

    PubMed  Google Scholar 

  19. Eveleigh R (2002) Fume levels during bone cement mixing. Br J Perioper Nurs 12(4):145–7, 149-50

    PubMed  Google Scholar 

  20. Fregert S (1983) Occupational hazards of acrylate bone cement in orthopaedic surgery. Acta Orthop Scand 54:787–9

    CAS  PubMed  Google Scholar 

  21. Frommelt L (2001) Gentamicin release from PMMA bone cement: mechanism and action on bacteria. In: Walenkamp GHIM, Murray DW (eds) Bone cement and cementing technique. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  22. Goodman SB, Fornasier VL, Kei J (1988) The effects of bulk versus particulate polymethylmethacrylate on bone. Clin Orthop (232):255–62

    Google Scholar 

  23. Harper EJ, Bonfield W (2000) Tensile characteristics of ten commercial acrylic bone cements. J Biomed Mater Res (Appl Biomater) 53:605–16

    Article  CAS  Google Scholar 

  24. Harrigan TP, Harris WH (1991) A three-dimensional non-linear finite element study of the effect of cement-prosthesis debonding in cemented femoral total hip components. J Biomech 24(11):1047–58

    Article  CAS  PubMed  Google Scholar 

  25. Harris WH (1992) The first 32 years of total hip arthroplasty. One surgeon’s perspective. Clin Orthop (274):6–11

    Google Scholar 

  26. Iesaka K, Jaffe WL, Kummer FJ (2003) Effects of preheating of hip prostheses on the stem-cement interface. J Bone Joint Surg Am 85(3):421–7

    PubMed  Google Scholar 

  27. James SP, Jasty M, Davies J, Piehler H, Harris WH (1992) A fractographic investigation of PMMA bone cement focusing on the relationship between porosity reduction and increased fatigue life. J Biomed Mater Res 26:651–62

    Article  CAS  PubMed  Google Scholar 

  28. James SP, Schmalzried TP, McGarry FJ, Harris WH (1993) Extensive porosity at the cement-femoral prosthesis interface: a preliminary study. J Biomed Mater Res 27(1):71–8

    Article  CAS  PubMed  Google Scholar 

  29. Janssen DW, Stolk J, Verdonschot N (2004) Why would cement porosity reduction be clinically irrelevant, while experimental data show the contrary? 50th Annual Meeting of the Orthopaedic Research Society. San Francisco, USA, p 3

    Google Scholar 

  30. Jasty M, Maloney WJ, Bragdon CR, O’Connor DO, Haire T, Harris WH (1991) The initiation of failure in cemented femoral components of hip arthroplasties. J Bone Joint Surg (Br) 73(4):551–8

    CAS  Google Scholar 

  31. Jensen JS, Trap B, Skydsgaard K (1991) Delayed contact hypersensitivity and surgical glove penetration with acrylic bone cements. Acta Orthop Scand 62:24–28

    CAS  PubMed  Google Scholar 

  32. Johanson NA, Bullough PG, Wilson PD Jr., Salvati EA, Ranawat CS (1987) The microscopic anatomy of the bone-cement interface in failed total hip arthroplasties. Clin Orthop (218):123–35

    Google Scholar 

  33. Leggat PA, Kedjarune U (2003) Toxicity of methyl methacrylate in dentistry. Int Dent J 53(3):126–31

    PubMed  Google Scholar 

  34. Lewis G (1997) Properties of Acrylic Bone Cement: State of Art Review. J Biomed Mater Res (Appl Biomater) 38:155–82

    CAS  Google Scholar 

  35. Lidgren L, Bodelind B, Möller J (1987) Bone cement improved by vacuum mixing and chilling. Acta Orthop Scand 57:27–32

    Google Scholar 

  36. Lidgren L, Drar H, Moller J (1984) Strength of polymethylmethacrylate increased by vacuum mixing, Acta Orthop Scand 55(5):536–41

    CAS  PubMed  Google Scholar 

  37. Lindén U (1991) Mechanical properties of bone cement. Importance of the mixing technique. Clin Orthop 272:274–8

    PubMed  Google Scholar 

  38. Linden U, Gillquist J (1989) Air inclusion in bone cement. Importance of the mixing technique. Clin Orthop 247:148–51

    PubMed  Google Scholar 

  39. Ling RS, Lee AJ (1998) Porosity reduction in acrylic cement is clinically irrelevant. Clin Orthop 355:249–53

    PubMed  Google Scholar 

  40. Malchau H, Herberts P (1996) Prognosis of total hip replacement; surgical and cementing technique in THR: a revision-risk study of 134 056 primary operations. 63rd Annual Meeting of the AAOS, February 22–26, Atlanta, USA

    Google Scholar 

  41. Malchau H, Herberts P (2000) Prognosis of total hip replacement. 65th Annual Meeting of the AAOS. March 15–19, Orland, USA

    Google Scholar 

  42. Mann KA, Damron LA, Race A, Ayers DC (2004) Early cementing does not increase debond energy of grit blasted interfaces. J Orthop Res 22(4):822–7

    Article  PubMed  Google Scholar 

  43. Mau H, Schelling K, Heisel C, Wang JS, Breusch SJ (2004) Comparison of different vacuum mixing systems and bone cements with respect to reliability, porosity and bending strength. Acta Orthop Scand 75:160–72

    Article  PubMed  Google Scholar 

  44. Muller SD, Green SM, McCaskie AW (2002) The dynamic volume changes of polymerising polymethyl methacrylate bone cement. Acta Orthop Scand 73(6):684–7

    Article  PubMed  Google Scholar 

  45. Murphy BP, Prendergast PJ (2002) The relationship between stress, porosity, and nonlinear damage accumulation in acrylic bone cement. J Biomed Mater Res 59(4):646–54

    Article  CAS  PubMed  Google Scholar 

  46. Neut D, van de Belt H, van Horn JR, van der Mei HC, Busscher HJ (2003) The effect of mixing on gentamicin release from polymethylmethacrylate bone cements. Acta Orthop Scand 74:670–6

    Article  PubMed  Google Scholar 

  47. Nissen JN, Corydon L (1985) Corneal ulcer after exposure to vapours from bone cement (methyl methacrylate and hydroquinone). Int Arch Occup Environ Health 56(2):161–5

    CAS  PubMed  Google Scholar 

  48. Nivbrant B, Karrholm J, Rohrl S, Hassander H, Wesslen B (2001) Bone cement with reduced proportion of monomer in total hip arthroplasty: preclinical evaluation and randomized study of 47 cases with 5 years’ follow-up. Acta Orthop Scand 72(6):572–84

    Article  CAS  PubMed  Google Scholar 

  49. Rimnace CM, Wright TM, McGill DL (1986) The effect of centrifugation on the fracture properties of acrylic bone cements. J Bone Joint Surg (Am) 68:281–7

    Google Scholar 

  50. Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA (1997) Radioopaque agents in bone cement increase bone resorption. J Bone Joint Surg (Br) 79:129–34

    Article  CAS  Google Scholar 

  51. Sabokbar A, Murray DW, Athanasou NA (2001) Osteolysis induced by radio-opaque agents. In ≫Bone cements and cementing techniques≪ Springer, Berlin Heidelberg, pp 149–61

    Google Scholar 

  52. Schelling K, Breusch SJ (2001) Efficacy of a new prepacked vacuum mixing system with Palamed G bone cement. In: Walenkamp GHIM, Murray DW (eds) Bone cement and cementing technique. Springer, Berlin Heidelberg New York Tokyo, pp 97–107

    Google Scholar 

  53. Schlegel UJ, Sturm M, Ewerbeck V, Breusch S (2004) Efficacy of vacuum bone cement mixing systems in reducing methylmethacrylate fume exposure: comparison of 7 different mixing devices and handmixing. Acta Orthop Scand; 75(5):559–66

    Article  PubMed  Google Scholar 

  54. Schreurs BW, Spierings PT, Huiskes R, Slooff TJ (1988) Effects of preparation techniques on the porosity of acrylic cements. Acta Orthop Scand 59:403–9.

    CAS  PubMed  Google Scholar 

  55. Shardlow DL, Stone MH, Ingham E, Fisher J (2003) Cement particles containing radio-opacifiers stimulate pro-osteolytic cytokine production from a human monocytic cell line. J Bone Joint Surg (Br) 85(6):900–5

    Google Scholar 

  56. Topoleski LD, Ducheyne P, Cuckler JM (1990) A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms. J Biomed Mater Res 24(2):135–54

    Article  CAS  PubMed  Google Scholar 

  57. Vale FM, Castro M, Monteriro J, Couto FS, Pinto R, Toscano G, Rico JM (1997) Acrylic bone cement induces the production of free radicls by cultured human fibroblasts. Biomaterials 18:1133–5

    Article  CAS  PubMed  Google Scholar 

  58. Verdonschot N (1995) Biomechanical failure scenarios for cemented total hip replacement. Thesis

    Google Scholar 

  59. Verdonschot N, Huiskes R (1997) The effects of cement-stem debonding in THA on the long-term failure probability of cement. J Biomech 30(8):795–802

    Article  CAS  PubMed  Google Scholar 

  60. Walker PS, Mai SF, Cobb AG, Bentley G, Hua J (1995) Prediction of clinical outcome of THR from migration measurements on standard radiographs. A study of cemented Charnley and Stanmore femoral stems. J Bone Joint Surg (Br) 77(5):705–14

    CAS  Google Scholar 

  61. Wang JS, Aspenberg P, Goodman S, Lidgren L (1998) Interface porosity in cemented implants in vitro study. 8th European Orthopeic society Meeting in Armsterdam, The Netherlands, May P, 2

    Google Scholar 

  62. Wang JS, Franzén H, Jonsson E, Lidgren L (1993) Porosity of bone cement reduced by mixing and collecting under vacuum. Acta Orthop Scand 64(2):143–46.

    CAS  PubMed  Google Scholar 

  63. Wang JS, Franzén H, Lidgren L (1999) Interface gap implantation of a cemented femoral stem in pigs. Acta Orthop Scand 70(3):229–33.

    Google Scholar 

  64. Wang JS, Goodman S, Franzén H, Aspenberg P, Lidgren L (1994) The effects of vacuum mixing on the microscopic homogenicity of bone cement. Europ. J. Exper. Musculoskeletal Res 2:159–65

    Google Scholar 

  65. Wang JS, Kjellson F (2001) Bone cement porosity in Vacuum Mixing system. In: Walenkamp GHIM, Murray DW (eds) Bone cements and Cementing technique. Springer, Berlin Heidelberg New York Tokyo, pp 81–95

    Google Scholar 

  66. Wang J-S, Toksvig-Larsen S, Müller-Wille P, Franzén H (1996) Is their any difference between vacuum mixing systems in reducing bone cement porosity? J Biomed Mater Res (Applied Biomaterials) 33:115–19.

    CAS  Google Scholar 

  67. Wilkinson JM, Eveleigh R, Hamer AJ, Milne A, Miles AW, Stockely I (2000) Effect of mixing technique on the properties of acrylic bone cement. J Arthroplasty 15:663–7

    Article  CAS  PubMed  Google Scholar 

  68. Wimhurst J, Brooks R, Rushton N (2001) The effects of particulate bone cements at the bone-implant interface. J Bone Joint Surg (Br) 83(4):588–92

    Article  CAS  Google Scholar 

  69. Wixon RL, Lautenschlager EP, Novak MA (1987) Vacuum mixing of acrylic bone cement. J Arthroplasty 2:141–49

    Google Scholar 

  70. Yau WP, Ng TP, Chiu KY, Poon KC, Ho WY, Luk DK (2001) The performance of three vacuum mixing cement guns-acomparison of the fatigue properties of Simplex P cement. International Orthopaedics 25:290–293

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Wang, JS. (2005). The Benefit of Vacuum Mixing. In: The Well-Cemented Total Hip Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28924-0_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-28924-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24197-3

  • Online ISBN: 978-3-540-28924-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics