Skip to main content

Efficient Implementation and Parallelization of Meshfree and Particle Methods—The Parallel Multilevel Partition of Unity Method

  • Chapter
Frontiers of Numerical Analysis

Part of the book series: Universitext ((UTX))

  • 1456 Accesses

Abstract

In these introductory notes, we focus on the efficient implementation and parallelization of meshfree methods. Even though there exist a large number of different meshfree methods, e.g. smoothed particle hydrodynamics (SPH), reproducing kernel particle methods (RKPM), element free Galerkin methods (EFGM), radial basis functions (RBF), generalized finite element methods (GFEM), and partition of unity methods (PUM), the computational challenges are very similar for many of these approaches.

Some of the key issues involved with meshfree Galerkin discretization techniques are the fast construction of the shape functions, the assembly of the stiffness matrix and the load vector, i.e. numerical integration, the treatment of essential boundary conditions, and the efficient solution of the arising linear systems. We shall consider these issues in the context of the PUM, however, the concepts presented are applicable to most meshfree Galerkin approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Babovsky, Die Boltzmann-Gleichung, B. G. Teubner, 1998.

    Google Scholar 

  2. I. Babuška, U. Banerjee, and J. E. Osborn, Meshless and Generalized Finite Element Methods: A Survey of Some Major Results, in Meshfree Methods for Partial Differential Equations, M. Griebel and M. A. Schweitzer, eds., vol. 26 of Lecture Notes in Computational Science and Engineering, Springer, 2002, pp. 1–20.

    Google Scholar 

  3. —, On Principles for the Selection of Shape Functions for the Generalized Finite Element Method, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 5595–5629.

    MathSciNet  MATH  Google Scholar 

  4. —, Survey of Meshless and Generalized Finite Element Methods: A Unified Approach, Acta Numerica, (2003), pp. 1–125.

    Google Scholar 

  5. —, Generalized Finite Element Methods—Main Ideas, Results, and Perspective, Inter. J. Comput. Meth., 1 (2004), pp. 67–103.

    MATH  Google Scholar 

  6. —, On the Approximability and the Selection of Particle Shape Functions, Numer. Math., 96 (2004), pp. 601–640.

    MathSciNet  MATH  Google Scholar 

  7. I. Babuška, G. Caloz, and J. E. Osborn, Special Finite Element Methods for a Class of Second Order Elliptic Problems with Rough Coefficients, SIAM J. Numer. Anal., 31 (1994), pp. 945–981.

    MathSciNet  MATH  Google Scholar 

  8. I. Babuška and J. M. Melenk, The Partition of Unity Finite Element Method: Basic Theory and Applications, Comput. Meth. Appl. Mech. Engrg. 139 (1996), pp. 289–314. Special Issue on Meshless Methods.

    MATH  Google Scholar 

  9. —, The Partition of Unity Method, Int. J. Numer. Meth. Engrg., 40 (1997), pp. 727–758.

    MATH  Google Scholar 

  10. S. Beissel and T. Belytschko, Nodal Integration of the Element-Free Galerkin Method, Comput. Meth. Appl. Mech. Engrg., 139 (1996), pp. 49–74.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Meshless Methods: An Overview and Recent Developments, Comput. Meth. Appl. Mech. Engrg., 139 (1996), pp. 3–47. Special Issue on Meshless Methods.

    Article  MATH  Google Scholar 

  12. M. Bern, D. Eppstein, and J. Gilbert, Provably Good Mesh Generation, J. Comput. Sys. Sci., 48 (1994), pp. 384–409.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Bey, Finite-Volumen-und Mehrgitter-Verfahren für elliptische Randwert-probleme, Advances in Numerical Mathematics, Teubner, 1998.

    Google Scholar 

  14. W. W. Bradburry and R. Fletcher, New Iterative Methods for the Solution of the Eigenproblem, Numer. Math., 9 (1966), pp. 259–267.

    MathSciNet  Google Scholar 

  15. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, 2001.

    Google Scholar 

  16. D. Braess and W. Hackbusch, A New Convergence Proof for the Multigrid Method Including the V-Cycle, SIAM J. Numer. Anal., 20 (1983), pp. 967–975.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. H. Bramble and X. Zhang, Handbook of Numerical Analysis, in The Analysis of Multigrid Methods, P. G. Ciarlet and J. L. Lions, eds., vol. VII, Elsevier, 2000, pp. 173–416.

    Google Scholar 

  18. W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, SIAM, 2nd ed., 2000.

    Google Scholar 

  19. J. S. Chen, C. T. Wu, and S. Yoon, Non-linear Version of Stabilized Conforming Nodal Integration for Galerkin Mesh-free Methods, Int. J. Numer. Meth. Engrg., 53 (2002), pp. 2587–2615.

    MATH  Google Scholar 

  20. J. S. Chen, C. T. Wu, S. Yoon, and Y. You, A Stabilized Conforming Nodal Integration for Galerkin Mesh-free Methods, Int. J. Numer. Meth. Engrg., 50 (2001), pp. 435–466.

    MATH  Google Scholar 

  21. P. G. Ciarlet, The Finite Element Methods for Elliptic Problems, North-Holland, 1980.

    Google Scholar 

  22. J. Culberson, Graph Coloring Page. www.cs.ualberta.ca/ joe/Coloring/.

    Google Scholar 

  23. W. Dahmen, Multiscale Analysis, Approximation, and Interpolation Spaces, in Approximation Theory VIII, C. K. Chui and L. L. Schumaker, eds., vol. 2, World Scientific, 1995, pp. 47–88.

    Google Scholar 

  24. R. Dave, J. Dubinski, and L. Hernquist, Parallel TreeSPH, New Astronomy, 2 (1997), pp. 277–297.

    Article  Google Scholar 

  25. S. De and K. J. Bathe, The Method of Finite Spheres, Comput. Mech., 25 (2000), pp. 329–345.

    Article  MathSciNet  MATH  Google Scholar 

  26. —, The Method of Finite Spheres with improved Numerical Integration, Comput.s & Struct., 79 (2001), pp. 2183–2196.

    MathSciNet  Google Scholar 

  27. G. A. Dilts, Moving-Least-Square-Particle Hydrodynamics I: Consistency and Stability, Int. J. Numer. Meth. Engrg., 44 (1999), pp. 1115–1155.

    MATH  MathSciNet  Google Scholar 

  28. —, Moving-Least-Square-Particle Hydrodynamics II: Conservation and Boundaries, Int. J. Numer. Meth. Engrg., 48 (2000), pp. 1503–1524.

    MATH  MathSciNet  Google Scholar 

  29. J. Dolbow and T. Belytschko, Numerical Integration of the Galerkin Weak Form in Meshfree Methods, Comput. Mech., 23 (1999), pp. 219–230.

    Article  MathSciNet  MATH  Google Scholar 

  30. C. A. M. Duarte, A Review of Some Meshless Methods to Solve Partial Differtial Equations, Tech. Rep. 95-06, TICAM, University of Texas, 1995.

    Google Scholar 

  31. C. A. M. Duarte and J. T. Oden, hp Clouds — A Meshless Method to Solve Boundary Value Problems, Numer. Meth. for PDE, 12 (1996), pp. 673–705.

    MathSciNet  MATH  Google Scholar 

  32. J. A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM J. Num. Anal., 10 (1973), pp. 345–363.

    MATH  MathSciNet  Google Scholar 

  33. T. Gerstner and M. Griebel, Numerical Integration using Sparse Grids, Numer. Alg., 18 (1998), pp. 209–232.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. A. Gingold and J. J. Monaghan, Smoothed Particle Hydrodynamics: Theory and Application to non-spherical Stars, Mon. Not. R. Astr. Soc., 181 (1977), pp. 375–389.

    MATH  Google Scholar 

  35. —, Kernel Estimates as a Basis for General Particle Methods in Hydrodynamics, J. Comput. Phys., 46 (1982), pp. 429–453.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, 1996.

    Google Scholar 

  37. M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar, Numerische Simulation in der Molekulardynamik, Springer, 2003.

    Google Scholar 

  38. M. Griebel, P. Oswald, and M. A. Schweitzer, A Particle-Partition of Unity Method—Part VI: A p-robust Multilevel Solver, in Meshfree Methods for Partial Differential Equations II, M. Griebel and M. A. Schweitzer, eds., vol. 43 of Lecture Notes in Computational Science and Engineering, Springer, 2004, pp. 71–92.

    Google Scholar 

  39. M. Griebel and M. A. Schweitzer, A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic and Hyperbolic PDE, SIAM J. Sci. Comput., 22 (2000), pp. 853–890.

    Article  MathSciNet  MATH  Google Scholar 

  40. —, A Particle-Partition of Unity Method—Part II: Efficient Cover Construction and Reliable Integration, SIAM J. Sci. Comput., 23 (2002), pp. 1655–1682.

    Article  MathSciNet  MATH  Google Scholar 

  41. —, A Particle-Partition of Unity Method—Part III: A Multilevel Solver, SIAM J. Sci. Comput., 24 (2002), pp. 377–409.

    Article  MathSciNet  MATH  Google Scholar 

  42. —, A Particle-Partition of Unity Method—Part IV: Parallelization, in Meshfree Methods for Partial Differential Equations, M. Griebel and M. A. Schweitzer, eds., vol. 26 of Lecture Notes in Computational Science and Engineering, Springer, 2002, pp. 161–192.

    Google Scholar 

  43. —, A Particle-Partition of Unity Method—Part V: Boundary Conditions, in Geometric Analysis and Nonlinear Partial Differential Equations, S. Hildebrandt and H. Karcher, eds., Springer, 2002, pp. 517–540.

    Google Scholar 

  44. —, eds., Meshfree Methods for Partial Differential Equations, vol. 26 of Lecture Notes in Computational Science and Engineering, Springer, 2002.

    Google Scholar 

  45. —, eds., Meshfree Methods for Partial Differential Equations II, vol. 43 of Lecture Notes in Computational Science and Engineering, Springer, 2005.

    Google Scholar 

  46. F. C. Günther and W. K. Liu, Implementation of Boundary Conditions for Meshless Methods, Comput. Meth. Appl. Mech. Engrg., 163 (1998), pp. 205–230.

    MATH  Google Scholar 

  47. W. Hackbusch, Multi-Grid Methods and Applications, vol. 4 of Springer Series in Computational Mathematics, Springer, 1985.

    Google Scholar 

  48. —, Elliptic Differential Equations. Theory and Numerical Treatment, Springer, 1992.

    Google Scholar 

  49. —, Iterative Solution of Large Sparse Linear Systems of Equations, Springer, 1994.

    Google Scholar 

  50. W. Han and X. Meng, Some Studies of the Reproducing Kernel Particle Method, in Meshfree Methods for Partial Differential Equations, M. Griebel and M. A. Schweitzer, eds., vol. 26 of Lecture Notes in Computational Science and Engineering, Springer, 2002, pp. 193–210.

    Google Scholar 

  51. J. Hoschek and D. Lasser, Grundlagen der geometrischen Datenverarbeitung, B. G. Teubner, 1992.

    Google Scholar 

  52. D. E. Knuth, The Art of Computer Programming, vol. 3 Searching and Sorting, Addison Wesley, Second ed., 1998.

    Google Scholar 

  53. Y. Krongauz and T. Belytschko, Enforcement of Essential Boundary Conditions in Meshless Approximations using Finite Elements, Comput. Meth. Appl. Mech. Engrg., 131 (1996), pp. 133–145.

    Google Scholar 

  54. P. Lancaster and K. Salkauskas, Surfaces Generated by Moving Least Squares Methods, Math. Comp., 37 (1981), pp. 141–158.

    MathSciNet  MATH  Google Scholar 

  55. S. Li and W. K. Liu, Meshfree Particle Methods, Springer, 2004.

    Google Scholar 

  56. C. Lia and G. Carraro, A Parallel Tree SPH Code for Galaxy Formation, Month. Not. Roy. Astro. Soc., 314 (2000), pp. 145–161.

    Google Scholar 

  57. D. E. Longsine and S. F. McCormick, Simultaneous Rayleigh-Quotient Minimization Methods for Ax = λBx, Lin. Alg. Appl., 34 (1980), pp. 195–234.

    Article  MathSciNet  MATH  Google Scholar 

  58. Y. Y. Lu, T. Belytschko, and L. Gu, A New Implementation of the Element Free Galerkin Method, Comput. Math. Appl. Mech. Engrg., 113 (1994), pp. 397–414.

    MathSciNet  MATH  Google Scholar 

  59. L. B. Lucy, A Numerical Approach to the Testing of the Fission Hypothesis, Astro. J., 82 (1977), pp. 1013–1024.

    Article  Google Scholar 

  60. M. Macri, S. De, and M. S. Shepard, Hierarchical Tree-based Discretization in the Method of Finite Spheres, Comput. & Struct., 81 (2003), pp. 789–803.

    Google Scholar 

  61. J. M. Melenk, On Approximation in Meshless Methods, in Durham 2004, J. Blowey and A. Craig, eds., Springer, 2004. this volume.

    Google Scholar 

  62. J. J. Monaghan, Why Particle Methods Work, SIAM J. Sci. Stat. Comput., 3 (1982), pp. 422–433.

    Article  MATH  MathSciNet  Google Scholar 

  63. —, An Introduction to SPH, Comput. Phys. Comm., 48 (1988), pp. 89–96.

    Article  MATH  Google Scholar 

  64. K. Nanbu, Direct Simulation Scheme derived from the Boltzmann Equation, J. Phys. Soc. Japan, 49 (1980), pp. 20–49.

    Google Scholar 

  65. —, Theoretical Basis on the Direct Simulation Monte Carlo Method, in Rarefied Gas Dynamics, V. Boffi and C. Cercignani, eds., vol. 1, Teubner, 1986.

    Google Scholar 

  66. H. Neunzert, A. Klar, and J. Struckmeier, Particle Methods: Theory and Applications, Tech. Rep. 95-153, Arbeitsgruppe Technomathematik, Universität Kaiserslautern, 1995.

    Google Scholar 

  67. H. Neunzert and J. Struckmeier, Particle Methods for the Boltzmann Equation, Acta Numerica, (1995), pp. 417–457.

    Google Scholar 

  68. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1970–1971), pp. 9–15.

    MathSciNet  Google Scholar 

  69. E. Novak, K. Ritter, R. Schmitt, and A. Steinbauer, On a Recent Interpolatory Method for High Dimensional Integration, J. Comput. Appl. Math., 15 (1999), pp. 499–522.

    MathSciNet  MATH  Google Scholar 

  70. P. Oswald, Multilevel Finite Element Approximation, Teubner Skripten zur Numerik, Teubner, 1994.

    Google Scholar 

  71. T. N. L. Patterson, The Optimum Addition of Points to Quadrature Formulae, Math. Comp., 22 (1968), pp. 847–856.

    MATH  Google Scholar 

  72. A. Pothen, Graph Partitioning Algorithms with Applications to Scientific Computing, in Parallel Numerical Algorithms, D. E. Keyes, A. Sameh, and V. Venkatakrishnan, eds., Kluwer Academic Publishers, 1997, pp. 323–368.

    Google Scholar 

  73. H. Sagan, Space-Filling Curves, Springer, 1994.

    Google Scholar 

  74. H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS, Addison-Wesley, 1990.

    Google Scholar 

  75. —, The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990.

    Google Scholar 

  76. M. A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations, vol. 29 of Lecture Notes in Computational Science and Engineering, Springer, 2003.

    Google Scholar 

  77. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, 1973.

    Google Scholar 

  78. T. Strouboulis, I. Babuška, and K. Copps, The Design and Analysis of the Generalized Finite Element Method, Comput. Meth. Appl. Mech. Engrg., 181 (2000), pp. 43–69.

    MATH  Google Scholar 

  79. T. Strouboulis, K. Copps, and I. Babuška, The Generalized Finite Element Method, Comput. Meth. Appl. Mech. Engrg., 190 (2001), pp. 4081–4193.

    Article  MATH  Google Scholar 

  80. U. Trottenberg, C. W. Osterlee, and A. Schüller, Multigrid, Academic Press, 2001, Appendix A: An Introduction to Algebraic Multigrid by K. Stüben, pp. 413–532.

    Google Scholar 

  81. M. S. Warren and J. K. Salmon, A Parallel Hashed Oct-Tree N-Body Algorithm, in Supercomputing’ 93, IEEE Comput. Soc., 1993, pp. 12–21.

    Google Scholar 

  82. —, A Portable Parallel Particle Program, Comput. Phys. Comm., 87 (1995).

    Google Scholar 

  83. J. Xu, Iterative Methods by Space Decomposition and Subspace Correction, SIAM Review, 34 (1992), pp. 581–613.

    Article  MATH  MathSciNet  Google Scholar 

  84. H. Yserentant, Old and New Convergence Proofs for Multigrid Methods, Acta Numerica 93, (1993), pp. 285–326.

    MathSciNet  Google Scholar 

  85. G. W. Zumbusch, On the Quality of Space-Filling Curve Induced Partitions, Z. Angew. Math. Mech., 81Suppl. 1 (2001), pp. 25–28.

    MATH  Google Scholar 

  86. —, Parallel Multilevel Methods. Adaptive Mesh Refinement and Loadbalancing, Advances in Numerical Mathematics, Teubner, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schweitzer, M.A. (2005). Efficient Implementation and Parallelization of Meshfree and Particle Methods—The Parallel Multilevel Partition of Unity Method. In: Blowey, J.F., Craig, A.W. (eds) Frontiers of Numerical Analysis. Universitext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28884-8_4

Download citation

Publish with us

Policies and ethics