Skip to main content

On Approximation in Meshless Methods

  • Chapter
Frontiers of Numerical Analysis

Part of the book series: Universitext ((UTX))

Abstract

We analyze the approximation properties of some meshless methods. Three types of functions systems are discussed: systems of functions that reproduce polynomials, a class of radial basis functions, and functions that are adapted to a differential operator. Additionally, we survey techniques for the enforcement of essential boundary conditions in meshless methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Armentano. Error estimates in Sobolev spaces for moving least square approximations. SIAM J. Numer. Anal., 39:38–51, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  2. S.N. Atluri and S. Shen. The meshless local Petrov-Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods. CMES Comput. Model. Eng. Sci., 3(1):11–51, 2002.

    MathSciNet  MATH  Google Scholar 

  3. A.K. Aziz and I.M. Babuška, editors. Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press, New York, 1972.

    MATH  Google Scholar 

  4. I. Babuška. The finite element method with Lagrange multipliers. Numer. Math., 20:179–192, 1973.

    MATH  Google Scholar 

  5. I. Babuška, B. Andersson, P.J. Smith, and K. Levin. Damage analysis of fiber composites. I: Statistical analysis of fiber scale. Comput. Meth. Appl. Mech. Engrg., 172:27–77, 1999.

    MATH  Google Scholar 

  6. I. Babuška, U. Banerjee, and J. Osborn. Survey of meshless and generalized finite element methods: a unified approach. In Acta Numerica 2003, pages 1–125. Cambridge University Press, 2003.

    Google Scholar 

  7. I. Babuška, G. Caloz, and J. Osborn. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal., 31:945–981, 1994.

    MathSciNet  MATH  Google Scholar 

  8. I. Babuška, R.B. Kellogg, and J. Pitkäranta. Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math., 33:447–471, 1979.

    MathSciNet  MATH  Google Scholar 

  9. I. Babuška and J. M. Melenk. The partition of unity method. Internat. J. Numer. Meths. Engrg., 40:727–758, 1997.

    MATH  Google Scholar 

  10. I. Babuška and J. Osborn. Can a finite element method perform arbitrarily badly? Math. Comput., 69:443–462, 2000.

    MATH  Google Scholar 

  11. T. Belytschko, L. Gu, and Y.Y. Lu. Fracture and crack growth by element-free Galerkin methods. Modelling Simul. Mater. Sci. Eng., 2:519–534, 1994.

    Article  Google Scholar 

  12. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An overview and recent developments. Comput. Meth. Appl. Mech. Engrg., 139:3–47, 1996.

    Article  MATH  Google Scholar 

  13. T. Belytschko, Y.Y. Lu, and L. Gu. Element-free Galerkin methods. Internat. J. Numer. Meths. Engrg., 37:229–256, 1994.

    MathSciNet  MATH  Google Scholar 

  14. T. Belytschko, Y.Y. Lu, and L. Gu. A new implementation of the element-free Galerkin method. Comput. Meth. Appl. Mech. Engrg., 113:397–414, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bergh and J. Löfström. Interpolation Spaces. Springer Verlag, 1976.

    Google Scholar 

  16. S. Bergman. Integral operators in the theory of linear partial differential equations. Springer Verlag, 1961.

    Google Scholar 

  17. S. Bergman and J. Herriot. Application of the method of the kernel function for solving boundary value problems. Numer. Math., 3:209–225, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Bergman and J. Herriot. Numerical solution of boundary-value problems by the method of integral operators. Numer. Math., 7:42–65, 1965.

    Article  MathSciNet  Google Scholar 

  19. T. Betcke and N.L. Trefethen. Reviving the method of particular solutions. SIAM Review, to appear.

    Google Scholar 

  20. H. Blum and M-Dobrowolski. On finite element methods for elliptic equations on domains with corners. Computing, 28:53–61, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Bramble and S.R. Hilbert. Estimation of linear functionals on sobolev spaces with application to fourier transforms and spline interpolation. SIAM J. Numer. Anal., 7:112–124, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Bramble and R. Scott. Simultaneous approximation in scales of Banach spaces. Math. Comput., 32:947–954, 1978.

    MathSciNet  MATH  Google Scholar 

  23. S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods. Springer Verlag, 1994.

    Google Scholar 

  24. Rob Brownlee and Will Light. Approximation orders for interpolation by surface splines to rough functions. IMA J. Numer. Anal., 24(2):179–192, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Buhmann. Radial basis functions. In Acta Numerica 2000, pages 1–38. Cambridge University Press, 2000.

    Google Scholar 

  26. M. D. Buhmann. Radial basis functions: theory and implementations, volume 12 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  27. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, 1976.

    Google Scholar 

  28. D. Colton. Bergman operators for elliptic equations in three independent variables. Bull. Amer. Math. Soc., 77(5):752–756, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  29. C. Daux, N. Moës, J. Dolbrow, N. Sukumar, and T. Belytschko. Arbitrary cracks and holes with the extended finite element method. Internat. J. Numer. Meths. Engrg., 48(12):1741–1760, 2000.

    MATH  Google Scholar 

  30. S. De and K.J. Bathe. The method of finite spheres. Computational Mechanics, 25:329–345, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Deny and J.L. Lions. Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble, 5:305–370, 1955.

    MathSciNet  Google Scholar 

  32. R.A. DeVore. Nonlinear approximation. In Acta Numerica 1998, pages 51–150. Cambridge University Press, 1998.

    Google Scholar 

  33. R.A. DeVore and G.G. Lorentz. Constructive Approximation. Springer Verlag, 1993.

    Google Scholar 

  34. C. A. Duarte, I. Babuška, and J. T. Oden. Generalized finite element methods for three-dimensional structural mechanics problems. Comput. & Structures, 77(2):215–232, 2000.

    MathSciNet  Google Scholar 

  35. J. Duchon. Splines minimizing rotation-invariant seminorms in Sobolev norms. In W. Schempp and K. Zeller, editors, Constructived Theory of Functions of Several Variables, volume 571 of Lecture Notes in Mathematics, pages 85–100. Springer Verlag, 1976.

    Google Scholar 

  36. J. Duchon. Sur l’erreur d’interpolation des fonctions de plusieurs variables par les D m-splines. RAIRO Anal. Numérique, 12(4):325–334, 1978.

    MATH  MathSciNet  Google Scholar 

  37. Y. Efendiev, T. Hou, and X.-H. Wu. Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal., 37(3):888–910, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  38. Stanley C. Eisenstat. On the rate of convergence of the Bergman-Vekua method for the numerical solution of elliptic boundary value problems. SIAM J. Numer. Anal., 11:654–680, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  39. L.C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

    Google Scholar 

  40. L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, 1992.

    Google Scholar 

  41. S. Fernández-Méndez, P. Díez, and A. Huerta. Convergence of finite elements enriched with meshless methods. Numer. Math., 96:43–59, 2003.

    MathSciNet  MATH  Google Scholar 

  42. G. Fix, S. Gulati, and G. I. Wakoff. On the use of singular functions with the finite element method. J. Comput. Phys., 13:209–228, 1973.

    Article  MathSciNet  Google Scholar 

  43. L. Fox, P. Henrici, and C. Moler. Approximations and bounds for eigenvalues of elliptic operators. SIAM J. Numer. Anal., 4:89–102, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  44. C. Franke and R. Schaback. Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comp. Math., 8:381–399, 1998.

    MathSciNet  MATH  Google Scholar 

  45. R. Franke. Scattered data interpolation: test of some methods. Math. Comput., 38:181–200, 1982.

    MATH  MathSciNet  Google Scholar 

  46. I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products, corrected and enlarged edition. Academic Press, New York, 1980.

    Google Scholar 

  47. M. Griebel and M.A. Schweitzer. A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic pdes. SIAM J. Sci. Stat. Comp., 22:853–890, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Griebel and M.A. Schweitzer. A particle-partition of unity method—part II: Efficient cover construction and reliable integration. SIAM J. Sci. Stat. Comp., 23:1655–1682, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Griebel and M.A. Schweitzer. A particle-partition of unity method—part III: A multilevel solver. SIAM J. Sci. Stat. Comp., 24(2):377–409, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Griebel and M.A. Schweitzer. A particle-partition of unity method—part IV: Parallelization. In M. Griebel and M.A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations, volume 26 of Lecture Notes in Computational Science and Engineering, pages 161–192. Springer, 2002.

    Google Scholar 

  51. M. Griebel and M.A. Schweitzer. A particle-partition of ynity method—part V: Boundary conditions. In S. Hildebrandt and H. Karcher, editors, Geometric Analysis and Nonlinear Partial Differential Equations, pages 517–540. Springer, 2002.

    Google Scholar 

  52. P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, 1985.

    Google Scholar 

  53. P. Grisvard. Singularities in Boundary Value Problems. Springer Verlag/Masson, 1992.

    Google Scholar 

  54. D. Hagen. Element-free Galerkin methods in combination with finite element approaches. Comput. Meth. Appl. Mech. Engrg., 139:237–262, 1996.

    Google Scholar 

  55. W. Han and X. Meng. error analysis of the reproducing kernel particle method. Comput. Meth. Appl. Mech. Engrg., 190:6157–6181, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  56. I. Herrera. Boundary Methods: An Algebraic Theory. Pitman, Boston, 1984.

    MATH  Google Scholar 

  57. K. Höllig, U. Reif, and J. Wipper. Weighted extended b-spline approximation of Dirichlet problems. SIAM J. Numer. Anal., 39(2):442–462, 2001.

    MathSciNet  MATH  Google Scholar 

  58. T. Hou. Numerical approximations to multiscale solutions in partial differential equations. In J. Blowey, A. Craig, and T. Shardlow, editors, Frontiers in numerical analysis (Durham, 2002), pages 241–301. Springer, 2003.

    Google Scholar 

  59. T. Hou, X.-H. Wu, and Z. Cai. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput., 68(227):913–943, 1999.

    MathSciNet  MATH  Google Scholar 

  60. A. Huerta, T. Belytschko, S. Fernández-Mández, and T. Rabczuk. Meshfree methods. In R. de Borst, T.J.R. Hughes, and E. Stein, editors, Encyclopedia of Computational Mechanics. Elsevier, to appear.

    Google Scholar 

  61. A. Iske. Multiresolution Methods in Scattered Data Modelling. Number 37 in Lecture Notes in Computational Science and Engineering. Springer Verlag, 2004.

    Google Scholar 

  62. J.W. Jerome. On n-widths in Sobolev spaces and applications to elliptic boundary value problems. Journal of Mathematical Analysis and Applications, 29:201–215, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  63. J. Jirousek and A. Venkatesh. Hybrid-Trefftz plane elasticity elements with p-method capabilities. Internat. J. Numer. Meths. Engrg., 35:1443–1472, 1992.

    MATH  Google Scholar 

  64. J. Jirousek and A.P. Zielinski. Survey of Trefftz-type element formulations. Computers and Structures, 63(2):225–242, 1997.

    Article  MATH  Google Scholar 

  65. E.J. Kansa. Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Computers and Mathematics with Applications, 19(8/9):127–145, 1990.

    MATH  MathSciNet  Google Scholar 

  66. E.J. Kansa. Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic, and elliptic partial differential equations. Computers and Mathematics with Applications, 19(8/9):147–161, 1990.

    MATH  MathSciNet  Google Scholar 

  67. I.V. Kantorovich and V.I. Krylov. Approximate Methods of Higher Analysis. Interscience Publishers, 1958.

    Google Scholar 

  68. Y. Krongaus and T. Belytschko. Enforcement of essential boundary conditions in meshless approximation using finite elments. Comput. Meth. Appl. Mech. Engrg., 131:133–145, 1996.

    Google Scholar 

  69. O. Laghrouche and P. Bettes. Solving short wave problems using special finite elements; towards an adaptive approach. In J. Whiteman, editor, Mathematics of Finite Elements and Applications X, pages 181–195. Elsevier, 2000.

    Google Scholar 

  70. S. Li, H. Lu, W. Han, W.K. Liu, and D. C. Simkins. Reproducing kernel element method. II. Globally conforming I m /C n hierarchies. Comput. Methods Appl. Mech. Engrg., 193(12–14):953–987, 20

    MathSciNet  MATH  Google Scholar 

  71. T. Liszka and J. Orkisz. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Computers & Structures, 11:83–95, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  72. W. K. Liu, J. Adee, and S. Jun. Reproducing kernel particle methods for elastic and plastic problems. In D.J. Benson and R.A. Asaro, editors, Advanced Computational Methods for Material Modeling, pages 175–190. AMD 180 and PVP 268, ASME, 1993.

    Google Scholar 

  73. W. K. Liu, W. Han, H. Lu, S. Li, and J. Cao. Reproducing kernel element method. I. Theoretical formulation. Comput. Methods Appl. Mech. Engrg., 193(12–14):933–951, 2004.

    MathSciNet  MATH  Google Scholar 

  74. W. K. Liu and S. Li. Reproducing kernel particle hierarchical partition of unity I: Formulation and theory. Internat. J. Numer. Meths. Engrg., 45:251–288, 1999.

    MATH  Google Scholar 

  75. W.K. Liu and S. Li. Reproducing kernel particle hierarchical partition of unity II: Applications. Internat. J. Numer. Meths. Engrg., 45:289–317, 1999.

    Google Scholar 

  76. A. I. Markushevich. Theory of functions of a complex variable. Chelsea Publishing Company, N.Y., 1965.

    Google Scholar 

  77. A.-M. Matache, I. Babuška, and C. Schwab. Generalized p-FEM in homogenization. Numer. Math., 86:319–375, 2000.

    MathSciNet  MATH  Google Scholar 

  78. J. M. Melenk. Finite element methods with harmonic shape functions for solving Laplace’s equation. Master’s thesis, University of Maryland, 1992.

    Google Scholar 

  79. J. M. Melenk. On Generalized Finite Element Methods. PhD thesis, University of Maryland, 1995.

    Google Scholar 

  80. J.M. Melenk. Operator adapted spectral element methods. I: Harmonic and generalized harmonic polynomials. Numer. Math., 84(1):35–69, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  81. J.M. Melenk. On n-widths for elliptic problems. J. Math. Anal. Appl., 274:272–289, 2000.

    MathSciNet  Google Scholar 

  82. J.M. Melenk and I. Babuška. The partition of unity finite element method: Basic theory and applications. Comput. Meth. Appl. Mech. Engrg., 139:289–314, 1996.

    Article  MATH  Google Scholar 

  83. S.G. Mikhlin. Numerical Perforamnce of Variational Methods. Nordhoff, 1971.

    Google Scholar 

  84. N. Moës, J. Dolbrow, and T. Belytschko. A finite element method for crack growth without remeshing. Internat. J. Numer. Meths. Engrg., 46(1):131–150, 1999.

    MATH  Google Scholar 

  85. N. I. Muskhelishvili. Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff, Groningen, 1963.

    MATH  Google Scholar 

  86. F. Narcowich, J. Ward, and H. Wendland. Sobatolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput., to appear.

    Google Scholar 

  87. B. Nayroles, G. Touzot, and P. Villon. Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics, 10:307–318, 1992.

    Article  MATH  Google Scholar 

  88. J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Univ. Hamburg, 36:9–15, 1970/71.

    Google Scholar 

  89. J. T. Oden and A. Duarte. hp clouds — a meshless method. Num. Meths. Part. Diff. Eqns., 12:673–705, 1996.

    MathSciNet  MATH  Google Scholar 

  90. J.T. Oden and C.A. Duarte. Clouds, cracks and fem’s. In B.D. Reddy, editor, Recent developments in computational and applied mechanics. A volume in honour of John B. Martin. Barcelona: CIMNE, pages 302–321, 1997.

    Google Scholar 

  91. E. Oñate, F. Perazzo, and J. Miguel. A finite point method for elasticity problems. Computers & Structures, 79:2143–2149, 2001.

    Google Scholar 

  92. A. Pinkus. n-widths in approximation theory. Springer Verlag, 1984.

    Google Scholar 

  93. G. Raugel. Résolution numérique par une méthode d’élements finis du probléme de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris, 286:791–794, 1978.

    MATH  MathSciNet  Google Scholar 

  94. C. Schwab. p-and hp-Finite Element Methods. Oxford University Press, 1998.

    Google Scholar 

  95. C. Schwab and A.M. Matache. Generalized FEM for homogenization problems. In Multiscale and multiresolution methods, volume 20 of Lect. Notes Comput. Sci. Eng., pages 197–237. Springer, Berlin, 2002.

    Google Scholar 

  96. M.A. Schweitzer. A parallel multilevel partition of unity method for elliptic partial differential equations, volume 29 of Lecture Notes in Computational Science and Engineering. Springer, 2003.

    Google Scholar 

  97. D. Shephard. A two-dimensional function for irregularly spaced data. In AMC National Conference, pages 517–524, 1968.

    Google Scholar 

  98. F.L. Stazi, E. Budyn, J. Chessa, and T. Belytschko. An extended finite element with higher-order elements for curved cracks. Computational Mechanics, 31:38–48, 2003.

    Article  MATH  Google Scholar 

  99. E.M. Stein. Singular integrals and differentiability properties of functions. Princeton University Press, 1970.

    Google Scholar 

  100. R. Stenberg. On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math., 63:139–148, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  101. T. Strouboulis, K. Copps, and I. Babuška. The design and analysis of the generalized finite element method. Comput. Meth. Appl. Mech. Engrg., 181:43–69, 2000.

    MATH  Google Scholar 

  102. T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element method: an example of its implementation and illustration of its performance. Internat. J. Numer. Meths. Engrg., 47:1401–1417, 2000.

    MATH  Google Scholar 

  103. T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element method. Comput. Meth. Appl. Mech. Engrg., 190:4081–4193, 2001.

    Article  MATH  Google Scholar 

  104. H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. Johann Ambrosius Barth, 2 edition, 1995.

    Google Scholar 

  105. I. N. Vekua. New Methods for Solving Elliptic Equations. North Holland, 1967.

    Google Scholar 

  106. H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math., 4:258–272, 1995.

    Article  MathSciNet  Google Scholar 

  107. H. Wendland. Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory, pages 361–368, 1998.

    Google Scholar 

  108. H. Wendland. Meshless Galerkin methods using radial basis functions. Math. Comput., 68:1521–1531, 1999.

    MATH  MathSciNet  Google Scholar 

  109. H. Wendland. Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal., 21:285–300, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  110. H. Wendland. Scattered Data Approximation. Cambridge University Press, 2004.

    Google Scholar 

  111. T. Zhu and S.N. Atluri. A modified collocation method and a penalty formulation for enforcing essential bounadry conditions. Comp. Mech., 21:165–178, 1998.

    Google Scholar 

  112. W.P. Ziemer. Weakly Differentiable Functions. Springer Verlag, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melenk, J.M. (2005). On Approximation in Meshless Methods. In: Blowey, J.F., Craig, A.W. (eds) Frontiers of Numerical Analysis. Universitext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28884-8_2

Download citation

Publish with us

Policies and ethics