Skip to main content

Transport of Fluid and Solutes in Tissues

  • Chapter
Pressure Ulcer Research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stücker M, Struk A, Altmeyer P, Herde M, Baumgärtl H, Lubbers DW (2002) The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of the human dermis and epidermis. J Physiol 538:985–994

    PubMed  Google Scholar 

  2. Rosell S (1984) Microcirculation and transport in adipose tissue. In: Handbook of physiology. The cardiovascular system. Microcirculation, sec 2, vol IV, pt 2. American Physiological Society, Bethesda, MD, pp 949–967

    Google Scholar 

  3. Krogh A (1919) The rate of diffusion of gases through animal tissues with some remarks on the coefficient of invasion. J Physiol 52, 391–408

    CAS  Google Scholar 

  4. Krogh A (1919) The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52:409–415

    CAS  Google Scholar 

  5. Krogh A (1919) The supply of oxygen to the tissues and the regulation of the capillary circulation. J Physiol 52:457–474

    CAS  Google Scholar 

  6. Kruezer F (1982) Oxygen supply to tissues: the Krogh model and its assumptions. Experientia 38: 1415–1426

    Google Scholar 

  7. Duling BR, Berne RM (1970) Longitudinal gradients in peri-arteriolar oxygen tension: a possible mechanism for the participation of oxygen in the local regulation of blood flow. Circ Res 27:669–678

    PubMed  CAS  Google Scholar 

  8. Kuo L, Pittman RN (1990) Effect of systemic hemodilution on arteriolar oxygen transport in hamster striated muscle. Am J Physiol 259:H1694–H1702

    PubMed  CAS  Google Scholar 

  9. Filho IPT, Kerger H, Intaglietta M (1996) PO2 measurements in arteriolar networks. Microvasc Res 51: 202–212

    Article  Google Scholar 

  10. Ellsworth M, Ellis CG, Popel AS, Pittman RN (1994) Role of microvessels in oxygen supply to tissues. News in Physiol Sci 9:119–123

    Google Scholar 

  11. Michel CC (1974) The transport of oxygen and carbon dioxide by the blood. In; MTP International Reviews of Sciences. Physiology Series 1 vol 2. Respiratory physiology. Butterworths, London, pp 67–104

    Google Scholar 

  12. Effros RM, Weissman ML (1979) Carbonic anhydrase activity of the cat hind leg. J Applied Physiol 47: 1090–1098

    CAS  Google Scholar 

  13. Effros RM, Shapiro L, Silverman P (1980) Carbonic anhydrase activity of rabbit lungs. J Appl Physiol 49:589–600

    PubMed  CAS  Google Scholar 

  14. Roughton FJW (1964) Transport of oxygen and carbon dioxide. In: Handbook of physiology, sec 3, vol 1. American Physiological Society, Bethesda, MD, pp 767–825

    Google Scholar 

  15. Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    PubMed  CAS  Google Scholar 

  16. Grotte G (1956) Passage of dextran molecules across blood-lymph barrier. Acta Chir Scand Suppl 211: 1–84

    Google Scholar 

  17. Pappenheimer JR, Renkin EM, Borrero LM (1951) Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am J Physiol 167:13–46

    PubMed  CAS  Google Scholar 

  18. Rippe B, Haraldsson B (1994) Transport of macromolecules across microvascular walls: the two pore theory. Physiol Rev 74:163–219

    PubMed  CAS  Google Scholar 

  19. Rippe B, Rosengren B-I, Carlsson O, Venturoli D (2002) Transendothelial transport: the vesicle controversy. J Vasc Res 39:375–390

    Article  PubMed  CAS  Google Scholar 

  20. Schnizter JE, Allard J, Oh P (1995) NEM inhibits transcytosis, endocytosis and capillary permeability; implication of caveolae fusion in endothelia. Am J Physiol 268:H48–H55

    Google Scholar 

  21. Levick JR (1991a) Capillary filtration-absorption balance reconsidered in the light of dynamic extravascular factors. Exp Physiol 76:825–857

    PubMed  CAS  Google Scholar 

  22. Michel CC (1984) Fluid movements through capillary walls. In: Handbook of physiology. The cardiovascular system. Microcirculation, sec 2, vol IV, pt 1, chap. 9. American Physiological Society, Bethesda, MD, pp 375–409

    Google Scholar 

  23. Michel CC, Phillips ME (1987) Steady state fluid filtration at different capillary pressures in perfused frog capillaries. J Physiol 388:421–435

    PubMed  CAS  Google Scholar 

  24. Levick JR, Michel CC (1978) The effects of position and skin temperature on the capillary pressures in the fingers and toes. J Physiol 274:97–109

    PubMed  CAS  Google Scholar 

  25. Neal CR, Michel CC (1995) Transcellular gaps in microvascular walls of frog and rat when permeability is increased with the ionophore A23187. J Physiol 488:427–437

    PubMed  CAS  Google Scholar 

  26. Feng DJ, Nagy J, Hipp K, Pyne K, Dvorak HF, Dvorak AM (1997) Re-interpretation of endothelial gasp induced by vasoactive mediators in guinea pig, mouse and rat: many are transcellular pores. J Physiol 504:747–761

    Article  PubMed  CAS  Google Scholar 

  27. Ryan TJ (1995) Lymphatics and adipose tissue. Clin Dermatol 13:493–498

    PubMed  CAS  Google Scholar 

  28. Watson P, Grodins F (1978) An analysis of the effects of the interstitial matrix on plasma-lymph transport. Microvasc Res 16:19–41

    Article  PubMed  CAS  Google Scholar 

  29. Guyton AC (1963) A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ Res 12:399–414

    PubMed  CAS  Google Scholar 

  30. Scholander P, Hargens AR, Miller SL (1968) Negative pressure in the interstitial fluid of animals. Science 161:321–328

    PubMed  CAS  ISI  Google Scholar 

  31. Auckland K, Nicolaysen G (1981) Interstitial fluid volume: local regulatory mechanisms. Physiol Rev 61: 556–643

    Google Scholar 

  32. Auckland K, Reed RK (1993) Interstitial lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73:1–78

    Google Scholar 

  33. Silberberg A (1981) The significance of hydrostatic pressure in the fluid phase of a structured tissue space. In: Hargens AR (ed) Tissue fluid pressure and composition. Williams & Wilkins, Baltimore, pp 71–73

    Google Scholar 

  34. Granger DN, Mortillaro NA, Kvietys PR, Taylor AE (1981) Regulation of interstitial fluid volume in the small bowel. In: Hargens AR (ed) Tissue fluid pressure and composition. Williams & Wilkins, Baltimore, pp 173–183

    Google Scholar 

  35. Levick JR (1987) Flow through interstitium and other fibrous matrices. Q J Exp Physiol 72:409–437

    PubMed  CAS  Google Scholar 

  36. Preston BN, Davies M, Ogston AG (1965) The composition and physicochemical properties of hyaluronic acids prepared from ox synovial fluid and from a case of mesothelioma. Biochem J 96:449–474

    PubMed  CAS  Google Scholar 

  37. Guyton AC, Scheel K, Murphee D (1966) Interstitial fluid pressure. III. Its effects on resistance to tissue fluid mobility. Circ Res 19:412–419

    PubMed  CAS  Google Scholar 

  38. Clough GF, Smaje LH (1978) Simultaneous measurement of the pressure in the interstitium and the terminal lymphatics of the cat mesentery. J Physiol 283:457–468

    PubMed  CAS  Google Scholar 

  39. Hogan RD (1981) The initial lymphatics and interstitial fluid pressure. In: Hargens AR (ed) Tissue fluid pressure and composition. Williams & Wilkins, Baltimore, pp 155–163

    Google Scholar 

  40. Casley Smith JR (1972) The role of the endothelial intercellular junctions in the function of the initial lymphatics. Angiologica 9:106–131

    Google Scholar 

  41. Trzewik J, Mallipattu SK, Artmann GM, Delano FA, Schmid-Schönbein GW (2001) Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J 15:1711–1717

    Article  PubMed  CAS  ISI  Google Scholar 

  42. Guyton AC, Granger H, Taylor AE (1975) Circulatory physiology II. Dynamics and control of the body fluids. Saunders Philadelphia

    Google Scholar 

  43. Wiederhielm CA (1972) The interstitial space. In: Fung YC, Perrone N, Anliker M (eds) Biomechanics: its foundations and its objectives. Prentice Hall, Englewood Cliffs, NJ, pp 273–286

    Google Scholar 

  44. Zweifach BW, Silberberg A (1979) The interstitial-lymphatic flow system. In: Guyton AC, Young DB (eds) Int Rev Physiol Cardiovascular Physiol III, vol 1. University Park Press, Baltimore, pp 215–260

    Google Scholar 

  45. Bert JL, Martinez M (1995) Interstitial fluid transport. In: Reed RK, McHale NG, Bert JL, Winlove CP, Laine GA (eds) Interstitium, connective tissue and lymphatics. Portland Press Proceedings, pp 101–117

    Google Scholar 

  46. Taylor DG (1995) Systems analysis and mathematical modelling of interstitial transport and microvascular exchange. In: Reed RK, McHale NG, Bert JL, Winlove CP, Laine GA (eds) Interstitium, connective tissue and lymphatics. Portland Press Proceedings, pp 119–135

    Google Scholar 

  47. Swartz M, Kaipainen A, Netti PA, Brekken C, Boucher Y, Grodzinsky AJ, Jain RK (1999) Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J Biomech 32: 1297–1307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michel, C. (2005). Transport of Fluid and Solutes in Tissues. In: Bader, D.L., Bouten, C.V., Colin, D., Oomens, C.W. (eds) Pressure Ulcer Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28804-X_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-28804-X_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25030-2

  • Online ISBN: 978-3-540-28804-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics