Skip to main content

Regulation vasomotorischer und sekretorischer Aktivität im juxtaglomerulären Apparat der Niere durch parakrine Faktoren

  • Chapter
Molekularmedizinische Grundlagen von para- und autokrinen Regulationsstörungen

Part of the book series: Molekulare Medizin ((MOLMED))

  • 1088 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.2.5 Literatur

  • Albinus M, Finkbeiner E, Sosath B, Osswald H (1998) Isolated superfused juxtaglomerular cells from rat kidney: A model for study of renin secretion. Am J Physiol 275: F991–997

    PubMed  CAS  Google Scholar 

  • Bachmann S, Mundel P (1994) Nitric oxide in the kidney: Synthesis, localization, and function. Am J Kidney Dis 24: 112–129

    PubMed  CAS  Google Scholar 

  • Bailie MD, Crosslan K, Hook JB (1976) Natriuretic effect of furosemide after inhibition of prostaglandin synthetase. J Pharmacol Exp Ther 199: 469–476

    PubMed  CAS  Google Scholar 

  • Baranowski RL, Westenfelder C (1994) Estimation of renal interstitial adenosine and purine metabolites by microdialysis. Am J Physiol 267: F174–182

    PubMed  CAS  Google Scholar 

  • Beierwaltes WH (1995) Selective neuronal nitric oxide synthase inhibition blocks furosemide-stimulated renin secretion in vivo. Am J Physiol Renal Physiol 269: F134–139

    CAS  Google Scholar 

  • Beierwaltes WH, Carretero OA (1992) Nonprostanoid endothelium-derived factors inhibit renin release. Hypertension 19: II68–73

    PubMed  CAS  Google Scholar 

  • Bell PD (1985) Cyclic AMP-calcium interaction in the transmission of tubuloglomerular feedback signals. Kidney Int 28: 728–732

    PubMed  CAS  Google Scholar 

  • Bell PD, Lapointe JY, Peti-Peterdi J (2003 a) Macula densa cell signaling. Annu Rev Physiol 65: 481–500

    PubMed  CAS  Google Scholar 

  • Bell PD, Lapointe JY, Sabirov R et al. (2003 b) Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci USA 100: 4322–4327

    PubMed  CAS  Google Scholar 

  • Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38: 900–908

    PubMed  CAS  Google Scholar 

  • Bosse HM, Bohm R, Resch S, Bachmann S (1995) Parallel regulation of constitutive NO synthase and renin at JGA of rat kidney under various stimuli. Am J Physiol Renal Physiol 269: F793–805

    CAS  Google Scholar 

  • Braam B, Koomans HA (1995) Reabsorption of nitro-L-arginine infused into the late proximal tubule participates in modulation of TGF responsiveness. Kidney Int 47: 1252–1257

    PubMed  CAS  Google Scholar 

  • Briggs JP, Schubert G, Schnermann J (1984) Quantitative characterization of the tubuloglomerular feedback response: effect of growth. Am J Physiol Renal Physiol 247: F808–815

    CAS  Google Scholar 

  • Brown R, Ollerstam A, Johansson B, Skott O, Gebre-Medhin S, Fredholm B, Persson AE (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281: R1362–1367

    PubMed  CAS  Google Scholar 

  • Buell G, Collo G, Rassendren F (1996) P2X receptors: An emerging channel family. Eur J Neurosci 8: 2221–2228

    PubMed  CAS  Google Scholar 

  • Burnstock G, Kennedy C (1986) A dual function for adenosine 5′-triphosphate in the regulation of vascular tone. Excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent. Circ Res 58: 319–330

    PubMed  CAS  Google Scholar 

  • Campean V, Theilig F, Paliege A, Breyer M, Bachmann S (2003) Key enzymes for renal prostaglandin synthesis: site-specific expression in rodent kidney (rat, mouse). Am J Physiol Renal Physiol 285: F19–32

    PubMed  CAS  Google Scholar 

  • Cass CE, Young JD, Baldwin SA (1998) Recent advances in the molecular biology of nucleoside transporters of mammalian cells. Biochem Cell Biol 76: 761–770

    PubMed  CAS  Google Scholar 

  • Castrop H, Schweda F, Schumacher K, Wolf K, Kurtz A (2001) Role of renocortical cyclooxygenase-2 for renal vascular resistance and macula densa control of renin secretion. J Am Soc Nephrol 12: 867–874

    PubMed  CAS  Google Scholar 

  • Castrop H, Huang Y, Hashimoto S et al. (2004 a) Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotidase/CD73-deficient mice. J Clin Invest 114(5): 634–642

    PubMed  CAS  Google Scholar 

  • Castrop H, Schweda F, Mizel D, Huang Y, Briggs J, Kurtz A, Schnermann J (2004b) Permissive role of nitric oxide in macula densa control of renin secretion. Am J Physiol Renal Physiol 286: F848–857

    PubMed  CAS  Google Scholar 

  • Cha SH, Sekine T, Endou H (1998) P2 purinoceptor localization along rat nephron and evidence suggesting existence of subtypes P2Y1 and P2Y2. Am J Physiol 274: F1006–1014

    PubMed  CAS  Google Scholar 

  • Chabrashvili T, Tojo A, Onozato ML et al. (2002) Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 39: 269–274

    PubMed  CAS  Google Scholar 

  • Chan CM, Unwin RJ, Bardini M, Oglesby IB, Ford AP, Townsend-Nicholson A, Burnstock G (1998) Localization of P2X1 purinoceptors by autoradiography and immunohistochemistry in rat kidneys. Am J Physiol 274: F799–804

    PubMed  CAS  Google Scholar 

  • Chatziantoniou C, Pauti MD, Pinet F, Promeneur D, Dussaule JC, Ardaillou R (1996) Regulation of renin release is impaired after nitric oxide inhibition. Kidney Int 49: 626–633

    PubMed  CAS  Google Scholar 

  • Chen YF, Li PL, Zou AP (2001) Oxidative stress enhances the production and actions of adenosine in the kidney. Am J Physiol Regul Integr Comp Physiol 281: R1808–1816

    PubMed  CAS  Google Scholar 

  • Cheng HF, Harris RC (2002) Cyclooxygenase-2 expression in cultured cortical thick ascending limb of Henle increases in response to decreased extracellular ionic content by both transcriptional and post-transcriptional mechanisms. Role of p38-mediated pathways. J Biol Chem 277: 45638–45643

    PubMed  CAS  Google Scholar 

  • Cheng HF, Wang JL, Zhang MZ, Miyazaki Y, Ichikawa I, McKanna JA, Harris RC (1999) Angiotensin II attenuates renal cortical cyclooxygenase-2 expression. J Clin Invest 103: 953–961

    PubMed  CAS  Google Scholar 

  • Cheng HF, Wang JL, Zhang MZ, McKanna JA, Harris RC (2000) Role of p38 in the regulation of renal cortical cyclooxygenase-2 expression by extracellular chloride. J Clin Invest 106: 681–688

    PubMed  CAS  Google Scholar 

  • Cheng HF, Wang JL, Zhang MZ, Wang SW, McKanna JA, Harris RC (2001) Genetic deletion of COX-2 prevents increased renin expression in response to ACE inhibition. Am J Physiol Renal Physiol 280: F449–456

    PubMed  CAS  Google Scholar 

  • Chiu T, Reid IA (1996) Role of cyclic GMP-inhibitable phosphodiesterase and nitric oxide in the beta adrenoceptor control of renin secretion. J Pharmacol Exp Ther 278: 793–799

    PubMed  CAS  Google Scholar 

  • Churchill PC, Churchill MC (1985) A1 and A2 adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices. J Pharmacol Exp Ther 232: 589–594

    PubMed  CAS  Google Scholar 

  • Churchill PC, Ellis VR (1993) Pharmacological characterization of the renovascular P2 purinergic receptors. J Pharmacol Exp Ther 265: 334–338

    PubMed  CAS  Google Scholar 

  • Cunha RA, Sebastiao AM, Ribeiro JA (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J Neurosci 18: 1987–1995

    PubMed  CAS  Google Scholar 

  • Delia Bruna R, Pinet F, Corvol P, Kurtz A (1995) Opposite regulation of renin gene expression by cyclic AMP and calcium in isolated mouse juxtaglomerular cells. Kidney Int 47: 1266–1273

    Google Scholar 

  • Dietrich MS, Endlich K, Parekh N, Steinhausen M (1991) Interaction between adenosine and angiotensin II in renal microcirculation. Microvasc Res 41: 275–288

    PubMed  CAS  Google Scholar 

  • DuBose TD Jr, Lucci MS (1983) Effect of carbonic anhydrase inhibition on superficial and deep nephron bicarbonate reabsorption in the rat. J Clin Invest 71: 55–65

    PubMed  CAS  Google Scholar 

  • Eltze M, Ullrich B (1996) Characterization of vascular P2 purinoceptors in the rat isolated perfused kidney. Eur J Pharmacol 306: 139–152

    PubMed  CAS  Google Scholar 

  • Fowler BC, Chang YS, Laamarti A, Higdon M, Lapointe JY, Bell PD (1995) Evidence for apical sodium proton exchange in macula densa cells. Kidney Int 47: 746–751

    PubMed  CAS  Google Scholar 

  • Francisco LL, Osborn JL, DiBona GF (1982) Prostaglandins in renin release during sodium deprivation. Am J Physiol Renal Physiol 243: F537–542

    CAS  Google Scholar 

  • Franco M, Bell PD, Navar LG (1988) Evaluation of prostaglandins as mediators of tubuloglomerular feedback. Am J Physiol Renal Physiol 254: F642–649

    CAS  Google Scholar 

  • Franco M, Bell PD, Navar LG (1989) Effect of adenosine A1 analogue on tubuloglomerular feedback mechanism. Am J Physiol Renal Physiol 257: F231–236

    CAS  Google Scholar 

  • Friis UG, Jensen BL, Sethi S, Andreasen D, Hansen PB, Skott O (2002) Control of renin secretion from rat juxtaglomerular cells by cAMP-specific phosphodiesterases. Circ Res 90: 996–1003

    PubMed  CAS  Google Scholar 

  • Fuson AL, Komlosi P, Unlap TM, Bell PD, Peti-Peterdi J (2003) Immunolocalization of a microsomal prostaglandin E synthase in rabbit kidney. Am J Physiol Renal Physiol 285: F558–564

    PubMed  Google Scholar 

  • Gambaryan S, Hausler C, Markert T et al. (1996) Expression of type II cGMP-dependent protein kinase in rat kidney is regulated by dehydration and correlated with renin gene expression. J Clin Invest 98: 662–670

    PubMed  CAS  Google Scholar 

  • Gambaryan S, Wagner C, Smolenski A et al. (1998) Endogenous or overexpressed cGMP-dependent protein kinases inhibit cAMP-dependent renin release from rat isolated perfused kidney, microdissected glomeruli, and isolated juxtaglomerular cells. Proc Natl Acad Sci USA 95: 9003–9008

    PubMed  CAS  Google Scholar 

  • Greenberg SG, Lorenz JN, He XR, Schnermann JB, Briggs JP (1993) Effect of prostaglandin synthesis inhibition on macula densa-stimulated renin secretion. Am J Physiol Renal Physiol 265: F578–583

    CAS  Google Scholar 

  • Greenberg SG, He XR, Schnermann JB, Briggs JP (1995) Effect of nitric oxide on renin secretion. I. Studies in isolated juxtaglomerular granular cells. Am J Physiol 268: F948–952

    PubMed  CAS  Google Scholar 

  • Hansen PB, Castrop H, Briggs J, Schnermann J (2003) Adenosine Induces Vasoconstriction through Gi-Dependent Activation of Phospholipase C in Isolated Perfused Afferent Arterioles of Mice. J Am Soc Nephrol 14: 2457–2465

    PubMed  CAS  Google Scholar 

  • Hansen PB, Hashimoto S, Oppermann M, Huang Y, Briggs JP, Schnermann J (2005) Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther (in press)

    Google Scholar 

  • Harder DR, Lange AR, Gebremedhin D, Birks EK, Roman RJ (1997) Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue. J Vasc Res 34: 237–243

    PubMed  CAS  Google Scholar 

  • Harding P, Sigmon DH, Alfie ME, Huang PL, Fishman MC, Beierwaltes WH, Carretero OA (1997) Cyclooxygenase-2 mediates increased renal renin content induced by lowsodium diet. Hypertension 29: 297–302

    PubMed  CAS  Google Scholar 

  • Harris RC (2003) Interactions between COX-2 and the renin-angiotensin system in the kidney. Acta Physiol Scand 177: 423–427

    PubMed  CAS  Google Scholar 

  • Harris RC, McKanna JA, Akai Y, Jacobson HR, Dubois RN, Breyer MD (1994) Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest 94: 2504–2510

    PubMed  CAS  Google Scholar 

  • Harrison SA, Reifsnyder DH, Gallis B, Cadd GG, Beavo JA (1986) Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: A receptor for new cardiotonic drugs. Mol Pharmacol 29: 506–514

    PubMed  CAS  Google Scholar 

  • Hartner A, Cordasic N, Goppelt-Struebe M, Veelken R, Hilgers KF (2003) Role of macula densa cyclooxygenase-2 in renovascular hypertension. Am J Physiol Renal Physiol 284: F498–502

    PubMed  CAS  Google Scholar 

  • He XR, Greenberg SG, Briggs JP, Schnermann JB (1995 a) Effects of furosemide and verapamil on the NaCl dependency of macula densa-mediated renin secretion. Hypertension 26: 137–142

    PubMed  CAS  Google Scholar 

  • He XR, Greenberg SG, Briggs JP, Schnermann JB (1995 b) Effect of nitric oxide on renin secretion. II. Studies in the perfused juxtaglomerular apparatus. Am J Physiol Renal Physiol 268: F953–959

    CAS  Google Scholar 

  • Henrich WL, McAllister EA, Smith PB, Campbell WB (1988) Guanosine 3′,5′-cyclic monophosphate as a mediator of inhibition of renin release. Am J Physiol 255: F474–478

    PubMed  CAS  Google Scholar 

  • Hocherl K, Wolf K, Castrop H et al. (2001) Renocortical expression of renin and of cyclooxygenase-2 in response to angiotensin II AT1 receptor blockade is closely coordinated but not causally linked. Pflugers Arch 442: 821–827

    PubMed  CAS  Google Scholar 

  • Hocherl K, Kammerl MC, Schumacher K, Endemann D, Grobecker HF, Kurtz A (2002) Role of prostanoids in regulation of the renin-angiotensin-aldosterone system by salt intake. Am J Physiol Renal Physiol 283: F294–301

    PubMed  CAS  Google Scholar 

  • Holz FG, Steinhausen M (1987) Renovascular effects of adenosine receptor agonists. Renal Physiol 10: 272–282

    PubMed  CAS  Google Scholar 

  • Hu ZW, Kerb R, Shi XY, Wei-Lavery T, Hoffman BB (2002) Angiotensin II increases expression of cyclooxygenase-2: Implications for the function of vascular smooth muscle cells. J Pharmacol Exp Ther 303: 563–573

    PubMed  CAS  Google Scholar 

  • Hunsucker SA, Spychala J, Mitchell BS (2001) Human cytosolic 5′-nucleotidase I: characterization and role in nucleoside analog resistance. J Biol Chem 276: 10498–10504

    PubMed  CAS  Google Scholar 

  • Ichihara A, Imig JD, Inscho EW, Navar LG (1998) Cyclooxy-genase-2 participates in tubular flow-dependent afferent arteriolar tone: Interaction with neuronal NOS. Am J Physiol Renal Physiol 275: F605–612

    CAS  Google Scholar 

  • Imig JD, Deichmann PC (1997) Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P-450 pathways. Am J Physiol 273: F274–282

    PubMed  CAS  Google Scholar 

  • Inscho EW, Ohishi K, Navar LG (1992) Effects of ATP on pre-and postglomerular juxtamedullary microvasculature. Am J Physiol 263: F886–893

    PubMed  CAS  Google Scholar 

  • Inscho EW, Ohishi K, Cook AK, Belott TP, Navar LG (1995) Calcium activation mechanisms in the renal microvascular response to extracellular ATP. Am J Physiol 268: F876–884

    PubMed  CAS  Google Scholar 

  • Inscho EW, Cook AK, Navar LG (1996) Pressure-mediated vasoconstriction of juxtamedullary afferent arterioles involves P2-purinoceptor activation. Am J Physiol 271: F1077–1085

    PubMed  CAS  Google Scholar 

  • Inscho EW, Cook AK, Mui V, Miller J (1998) Direct assessment of renal microvascular responses to P2-purinoceptor agonists. Am J Physiol Renal Physiol 274: F718–727

    CAS  Google Scholar 

  • Inscho EW, Cook AK, Imig JD, Vial C, Evans RJ (2003) Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest 112: 1895–1905

    PubMed  CAS  Google Scholar 

  • Itoh S, Carretero OA (1985) Role of the macula densa in renin release. Hypertension 7: 149–54

    Google Scholar 

  • Ito S, Ren YL (1993) Evidence for the role of nitric oxide in macula densa control of glomerular hemodynamics. J Clin Invest 92: 1093–1098

    PubMed  CAS  Google Scholar 

  • Ito O, Alonso-Galicia M, Hopp KA, Roman RJ (1998) Localization of cytochrome P-450 4A isoforms along the rat nephron. Am J Physiol 274: F395–404

    PubMed  CAS  Google Scholar 

  • Jackson EK (1991) Adenosine: A physiological brake on renin release. Annu Rev Pharmacol Toxicol 31: 1–35

    PubMed  CAS  Google Scholar 

  • Jackson EK, Dubey RK (2001) Role of the extracellular cAMP-adenosine pathway in renal physiology. Am J Physiol Renal Physiol 281: F597–612

    PubMed  CAS  Google Scholar 

  • Jackson EK, Mi Z (2000) Preglomerular microcirculation expresses the cAMP-adenosine pathway. J Pharmacol Exp Ther 295: 23–28

    PubMed  CAS  Google Scholar 

  • Jackson EK, Mi Z, Gillespie DG, Dubey RK (1997) Metabolism of cAMP to adenosine in the renal vasculature. J Pharmacol Exp Ther 283: 177–182

    PubMed  CAS  Google Scholar 

  • Jensen BL, Kurtz A (1997) Differential regulation of renal cyclooxygenase mRNA by dietary salt intake. Kidney Int 52: 1242–1249

    PubMed  CAS  Google Scholar 

  • Jensen BL, Schmid C, Kurtz A (1996) Prostaglandins stimulate renin secretion and renin mRNA in mouse renal juxtaglomerular cells. Am J Physiol Renal Physiol 271: F659–669

    CAS  Google Scholar 

  • Joyner WL, Mohama RE, Myers TO, Gilmore JP (1988) The selective response to adenosine of renal microvessels from hamster explants. Microvasc Res 35: 122–131

    PubMed  Google Scholar 

  • Kammerl MC, Nusing RM, Richthammer W, Kramer BK, Kurtz A (2001a) Inhibition of COX-2 counteracts the effects of diuretics in rats. Kidney Int 60: 1684–1691

    PubMed  CAS  Google Scholar 

  • Kammerl MC, Nusing RM, Seyberth HW, Riegger GA, Kurtz A, Kramer BK (2001b) Inhibition of cyclooxygenase-2 at-tenuates urinary prostanoid excretion without affecting renal renin expression. Pflugers Arch 442: 842–847

    PubMed  CAS  Google Scholar 

  • Kawabata M, Ogawa T, Takabatake T (1998) Control of rat glomerular microcirculation by juxtaglomerular adenosine A1 receptors. Kidney Int Suppl 67: S228–230

    Google Scholar 

  • Kegel B, Braun N, Heine P, Maliszewski CR, Zimmermann H (1997) An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacology 36: 1189–1200

    PubMed  CAS  Google Scholar 

  • Khan KN, Venturini CM, Bunch RT et al. (1998) Interspecies differences in renal localization of cyclooxygenase isoforms: implications in nonsteroidal antiinflammatory drug-related nephrotoxicity. Toxicol Pathol 26: 612–620

    PubMed  CAS  Google Scholar 

  • Komhoff M, Grone HJ, Klein T, Seyberth HW, Nusing RM (1997) Localization of cyclooxygenase-1 and-2 in adult and fetal human kidney: implication for renal function. Am J Physiol Renal Physiol 272: F460–468

    CAS  Google Scholar 

  • Komhoff M, Jeck ND, Seyberth HW, Grone HJ, Nusing RM, Breyer MD (2000) Cyclooxygenase-2 expression is associated with the renal macula densa of patients with Bartter-like syndrome. Kidney Int 58: 2420–2424

    PubMed  CAS  Google Scholar 

  • Komhoff M, Reinalter SC, Grone HJ, Seyberth HW (2003) Induction of microsomal prostaglandin E2 synthase in the macula densa in children with hypokalemic salt-losing tubulopathies. Pediatr Res 55: 261–266

    PubMed  Google Scholar 

  • Kovacs G, Komlosi P, Fuson A, Peti-Peterdi J, Rosivall L, Bell PD (2003) Neuronal nitric oxide synthase: Its role and regulation in macula densa cells. J Am Soc Nephrol 14: 2475–2483

    PubMed  CAS  Google Scholar 

  • Kreisberg MS, Silldorff EP, Pallone TL (1997) Localization of adenosine-receptor subtype mRNA in rat outer medullary descending vasa recta by RT-PCR. Am J Physiol Heart Circ Physiol 272: H1231–1238

    CAS  Google Scholar 

  • Kriz W, Kaissling B (2000) Structural organization of the mammalian kidney. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and Pathophysiology. Lippincott Williams & Wilkins, Philadelphia, pp 587–654

    Google Scholar 

  • Kuan CJ, Wells JN, Jackson EK (1989) Endogenous adenosine restrains renin release during sodium restriction. J Pharmacol Exp Ther 249: 110–116

    PubMed  CAS  Google Scholar 

  • Kuan CJ, Wells JN, Jackson EK (1990) Endogenous adenosine restrains renin release in conscious rats. Circ Res 66: 637–646

    PubMed  CAS  Google Scholar 

  • Kurtz A, Della Bruna R, Pfeilschifter J, Bauer C (1986) Effect of synthetic atrial natriuretic peptide on rat renal juxtaglomerular cells. J Hypertens Suppl 4: S57–60

    Google Scholar 

  • Kurtz A, Della Bruna R, Pfeilschifter J, Bauer C (1988) Role of cGMP as second messenger of adenosine in the inhibition of renin release. Kidney Int 33: 798–803

    PubMed  CAS  Google Scholar 

  • Kurtz A, Gotz KH, Hamann M, Kieninger M, Wagner C (1998 a) Stimulation of renin secretion by NO donors is related to the cAMP pathway. Am J Physiol Renal Physiol 274: F709–717

    CAS  Google Scholar 

  • Kurtz A, Gotz KH, Hamann M, Wagner C (1998b) Stimulation of renin secretion by nitric oxide is mediated by phosphodiesterase 3. Proc Natl Acad Sci USA 95: 4743–4747

    PubMed  CAS  Google Scholar 

  • Larsson C, Weber P, Anggard E (1974) Arachidonic acid increases and indomethacin decreases plasma renin activity in the rabbit. Eur J Pharmacol 28: 391–394

    PubMed  CAS  Google Scholar 

  • Levine DZ, Burns KD, Jaffey J, Iacovitti M (2004) Short-term modulation of distal tubule fluid nitric oxide in vivo by loop NaCl reabsorption. Kidney Int 65: 184–189

    PubMed  CAS  Google Scholar 

  • Liu R, Pittner J, Persson AE (2002) Changes of cell volume and nitric oxide concentration in macula densa cells caused by changes in luminal NaCl concentration. J Am Soc Nephrol 13: 2688–2696

    PubMed  CAS  Google Scholar 

  • Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Nat Acad Sci USA 77: 2551–2554

    PubMed  CAS  Google Scholar 

  • Lorenz JN, Weihprecht H, Schnermann J, Skott O, Briggs JP (1991) Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol Renal Physiol 260: F486–493

    CAS  Google Scholar 

  • Mangat H, Peterson LN, Burns KD (1997) Hypercalcemia stimulates expression of intrarenal phospholipase A2 and prostaglandin H synthase-2 in rats. J Clin Invest 100: 1941–1950

    PubMed  CAS  Google Scholar 

  • Mann B, Hartner A, Jensen BL, Kammerl M, Kramer BK, Kurtz A (2001) Furosemide stimulates macula densa cyclooxygenase-2 expression in rats. Kidney Int 59: 62–68

    PubMed  CAS  Google Scholar 

  • Milner P, Kirkpatrick KA, Ralevic V, Toothill V, Pearson J, Burnstock G (1990) Endothelial cells cultured from human umbilical vein release ATP, substance P and acetylcholine in response to increased flow. Proc R Soc Lond B Biol Sci 241: 245–248

    CAS  Google Scholar 

  • Mitchell KD, Navar LG (1993) Modulation of tubuloglomerular feedback responsiveness by extracellular ATP. Am J Physiol Renal Physiol 264: F458–466

    CAS  Google Scholar 

  • Morsing P, Persson AE (1992) Effect of prostaglandin synthesis inhibition on the tubuloglomerular feedback control in the rat kidney. Ren Physiol Biochem 15: 66–72

    PubMed  CAS  Google Scholar 

  • Morsing P, Stenberg A, Persson AE (1989) Effect of thromboxane inhibition on tubuloglomerular feedback in hydronephrotic kidneys. Kidney Int 36: 447–452

    PubMed  CAS  Google Scholar 

  • Mundel P, Bachmann S, Bader M, Fischer A, Kummer W, Mayer B, Kriz W (1992) Expression of nitric oxide synthase in kidney macula densa cells. Kidney Int 42: 1017–1019

    PubMed  CAS  Google Scholar 

  • Murakami K, Tsuchiya K, Naruse M, Naruse K, Demura H, Arai J, Nihei H (1997) Nitric oxide synthase I immunoreactivity in the macula densa of the kidney is angiotensin II dependent. Kidney Int Suppl 63: S208–210

    Google Scholar 

  • Murakami M, Nakatani Y, Tanioka T, Kudo I (2002) Prostaglandin E synthase. Prostaglandins Other Lipid Mediat 68/69: 383–399

    Google Scholar 

  • Nantel F, Meadows E, Denis D, Connolly B, Metters KM, Giaid A (1999) Immunolocalization of cyclooxygenase-2 in the macula densa of human elderly. FEBS Lett 457: 475–477

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Miura K, Miyatake A et al. (1999) Renal interstitial concentration of adenosine during endotoxin shock. Eur J Pharmacol 385: 209–216

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Majid DS, Taher KA, Miyatake A, Navar LG (2000) Relation between renal interstitial ATP concentrations and autoregulation-mediated changes in renal vascular resistance. Circ Res 86: 656–662

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Inscho EW, Navar LG (2001a) Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol Renal Physiol 280: F406–414

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Kimura S, He H, Miura K, Rahman M, Fujisawa Y, Fukui T, Abe Y (2001b) Renal interstitial adenosine metabolism during ischemia in dogs. Am J Physiol Renal Physiol 280: F231–238

    PubMed  CAS  Google Scholar 

  • Okumura M, Miura K, Yamashita Y, Yukimura T, Yamamoto K (1992) Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs. J Pharmacol Exp Ther 260: 1262–1267

    PubMed  CAS  Google Scholar 

  • Olson RD, Skoglund ML, Nies AS, Gerber JG (1980) Prostaglandins mediate the macula densa stimulated renin release. Adv Prostaglandin Thromboxane Res 7: 1135–1137

    PubMed  CAS  Google Scholar 

  • Ortiz PA, Garvin JL (2001) NO Inhibits NaCl absorption by rat thick ascending limb through activation of cGMP-stimulated phosphodiesterase. Hypertension 37: 467–471

    PubMed  CAS  Google Scholar 

  • Osswald H, Schmitz HJ, Kemper R (1977) Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and postischemic recirculation. Pflugers Arch 371: 45–49

    PubMed  CAS  Google Scholar 

  • Osswald H, Spielman WS, Knox FG (1978) Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res 43: 465–469

    PubMed  CAS  Google Scholar 

  • Osswald H, Hermes HH, Nabakowski G (1982) Role of adenosine in signal transmission of tubuloglomerular feedback. Kidney Int Suppl 12: S136–142

    Google Scholar 

  • Palmer TM, Stiles GL (1997) Structure-function analysis of inhibitory adenosine receptor regulation. Neuropharmacology 36: 1141–1147

    PubMed  CAS  Google Scholar 

  • Persson AEG, Wright FS (1982) Evidence for feedback mediated reduction of glomerular filtration rate during infusion of acetazolamide. Acta Physiol Scand 114: 1–7

    PubMed  CAS  Google Scholar 

  • Peti-Peterdi J, Bell PD (1999) Cytosolic [Ca2+] signaling pathway in macula densa cells. Am J Physiol Renal Physiol 277: F472–476

    CAS  Google Scholar 

  • Peti-Peterdi J, Qi Z, Redha R, Breyer MD, Bell PD (2002) Direct evidence that decreasing luminal NaCl activates COX2 dependent PGE2 release from macula densa cells. J Am Soc Nephrol 13: 18 A (abstract)

    Google Scholar 

  • Plato CF, Shesely EG, Garvin JL (2000) eNOS mediates L-arginine-induced inhibition of thick ascending limb chloride flux. Hypertension 35: 319–323

    PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50: 413–492

    PubMed  CAS  Google Scholar 

  • Reid IA, Chou L (1995) Effect of blockade of nitric oxide synthesis on the renin secretory response to frusemide in conscious rabbits. Clin Sci (Colch) 88: 657–663

    PubMed  CAS  Google Scholar 

  • Reinalter SC, Jeck N, Brochhausen C, Watzer B, Nusing RM, Seyberth HW, Komhoff M (2002) Role of cyclooxygenase-2 in hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int 62: 253–260

    PubMed  CAS  Google Scholar 

  • Ren YL, Garvin JL, Carretero OA (2000) Role of macula densa nitric oxide and cGMP in the regulation of tubulo-glomerular feedback. Kidney Int 58: 2053–2060

    PubMed  CAS  Google Scholar 

  • Ren Y, Arima S, Carretero OA, Ito S (2002) Possible role of adenosine in macula densa control of glomerular hemodynamics. Kidney Int 61: 169–176

    PubMed  CAS  Google Scholar 

  • Ren Y, Garvin JL, Liu R, Carretero OA (2003) Role of macula densa adenosine triphosphate on tubuloglomerular feedback. J Am Soc Nephrol 14: 57 A (abstract)

    Google Scholar 

  • Resta R, Thompson LF (1997) T cell signalling through CD73. Cell Signal 9: 131–139

    PubMed  CAS  Google Scholar 

  • Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82: 131–185

    PubMed  CAS  Google Scholar 

  • Sala-Newby GB, Newby AC (2001) Cloning of a mouse cytosolic 5′-nucleotidase-I identifies a new gene related to human autoimmune infertility-related protein. Biochim Biophys Acta 1521: 12–18

    PubMed  CAS  Google Scholar 

  • Sala-Newby GB, Skladanowski AC, Newby AC (1999) The mechanism of adenosine formation in cells. Cloning of cytosolic 5′-nucleotidase-I. J Biol Chem 274: 17789–17793

    PubMed  CAS  Google Scholar 

  • Salomonsson M, Gonzalez E, Westerlund P, Persson AE (1991) Intracellular cytosolic free calcium concentration in the macula densa and in ascending limb cells at different luminal concentrations of sodium chloride and with added furosemide. Acta Physiol Scand 142: 283–290

    PubMed  CAS  Google Scholar 

  • Sandoval S, Garcia L, Mancilla M et al. (1996) ATP-diphosphohydrolase activity in rat renal microvillar membranes and vascular tissue. Int J Biochem Cell Biol 28: 591–599

    PubMed  CAS  Google Scholar 

  • Sayago CM, Beierwaltes WH (2001) Nitric oxide synthase and cGMP-mediated stimulation of renin secretion. Am J Physiol Regul Integr Comp Physiol 281: R1146–1151

    PubMed  CAS  Google Scholar 

  • Schnackenberg CG, Welch WJ, Wilcox CS (2000) TP receptor-mediated vasoconstriction in microperfused afferent arterioles: roles of O(2)(-) and NO. Am J Physiol Renal Physiol 279: F302–308

    PubMed  CAS  Google Scholar 

  • Schnermann J, Briggs JP (2000) Function of the juxtaglomerular apparatus: control of glomerular hemodynamics and renin secretion. In: Seldin DW, Giebisch G (eds) The kidney physiology and pathophysiology. Lippincott Williams & Wilkins, Philadelphia, pp 945–980

    Google Scholar 

  • Schnermann J, Levine DZ (2003) Paracrine factors in tubuloglomerular feedback: Adenosine, ATP, and nitric oxide. Annu Rev Physiol 65: 501–529

    PubMed  CAS  Google Scholar 

  • Schnermann J, Persson AE, Agerup B (1973) Tubuloglomerular feedback. Nonlinear relation between glomerular hydrostatic pressure and loop of henle perfusion rate. J Clin Invest 52: 862–869

    PubMed  CAS  Google Scholar 

  • Schnermann J, Ploth DW, Hermle M (1976) Activation of tubulo-glomerular feedback by chloride transport. Pfluegers Arch 362: 229–240

    CAS  Google Scholar 

  • Schnermann J, Osswald H, Hermle M (1977) Inhibitory effect of methylxanthines on feedback control of glomerular filtration rate in the rat. Pflugers Arch 369: 39–48

    PubMed  CAS  Google Scholar 

  • Schnermann J, Schubert G, Hermle M, Herbst R, Stowe NT, Yarimizu S, Weber PC (1979) The effect of inhibition of prostaglandin synthesis on tubuloglomerular feedback in the rat kidney. Pflugers Arch 379: 269–279

    PubMed  CAS  Google Scholar 

  • Schnermann J, Weihprecht H, Briggs JP (1990) Inhibition of tubuloglomerular feedback during adenosinel receptor blockade. Am J Physiol Renal Physiol 258: F553–561

    CAS  Google Scholar 

  • Schnermann J, Traynor T, Pohl H, Thomas DW, Coffman TM, Briggs JP (2000) Vasoconstrictor responses in thromboxane receptor knockout mice: tubuloglomerular feedback and ureteral obstruction. Acta Physiol Scand 168: 201–207

    PubMed  CAS  Google Scholar 

  • Schricker K, Kurtz A (1993) Liberators of NO exert a dual effect on renin secretion from isolated mouse renal juxtaglomerular cells. Am J Physiol 265: F180–186

    PubMed  CAS  Google Scholar 

  • Schricker K, Hamann M, Kurtz A (1995) Nitric oxide and prostaglandins are involved in the macula densa control of the renin system. Am J Physiol Renal Physiol 269: F825–830

    CAS  Google Scholar 

  • Schricker K, Potzl B, Hamann M, Kurtz A (1996) Coordinate changes of renin and brain-type nitric-oxide-synthase (β-NOS) mRNA levels in rat kidneys. Pflugers Arch 432: 394–400

    PubMed  CAS  Google Scholar 

  • Schweda F, Wagner C, Kramer BK, Schnermann J, Kurtz A (2003) Preserved macula densa-dependent renin secretion in Al adenosine receptor knockout mice. Am J Physiol Renal Physiol 284: F770–777

    PubMed  CAS  Google Scholar 

  • Schwiebert EM, Kishore BK (2001) Extracellular nucleotide signaling along the renal epithelium. Am J Physiol Renal Physiol 280: F945–963

    PubMed  CAS  Google Scholar 

  • Siegfried G, Amiel C, Friedlander G (1996) Inhibition of ecto-5′-nucleotidase by nitric oxide donors. Implications in renal epithelial cells. J Biol Chem 271: 4659–4664

    PubMed  CAS  Google Scholar 

  • Singh I, Grams M, Wang WH et al. (1996) Coordinate regulation of renal expression of nitric oxide synthase, renin, and angiotensinogen mRNA by dietary salt. Am J Physiol Renal Physiol 270: F1027–1037

    CAS  Google Scholar 

  • Siragy HM, Linden J (1996) Sodium intake markedly alters renal interstitial fluid adenosine. Hypertension 27: 404–407

    PubMed  CAS  Google Scholar 

  • Sun D, Samuelson LC, Yang T et al. (2001) Mediation of tubuloglomerular feedback by adenosine: Evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA 98: 9983–9988

    PubMed  CAS  Google Scholar 

  • Theilig F, Bostanjoglo M, Pavenstadt H et al. (2001) Cellular distribution and function of soluble guanylyl cyclase in rat kidney and liver. J Am Soc Nephrol 12: 2209–2220

    PubMed  CAS  Google Scholar 

  • Theilig F, Campean V, Paliege A, Breyer M, Briggs JP, Schnermann J, Bachmann S (2002) Epithelial COX-2 expression is not regulated by nitric oxide in rodent renal cortex. Hypertension 39: 848–853

    PubMed  CAS  Google Scholar 

  • Thomson S, Bao D, Deng A, Vallon V (2000) Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. J Clin Invest 106: 289–298

    PubMed  CAS  Google Scholar 

  • Thorup C, Persson AE (1994) Inhibition of locally produced nitric oxide resets tubuloglomerular feedback mechanism. Am J Physiol Renal Physiol 267: F606–611

    CAS  Google Scholar 

  • Thorup C, Persson AEG (1996) Macula densa derived nitric oxide in regulation of glomerular capillary pressure. Kidney Int 49: 430–436

    PubMed  CAS  Google Scholar 

  • Tojo A, Madsen KM, Wilcox CS (1995) Expression of immunoreactive nitric oxide synthase isoforms in rat kidney. Effects of dietary salt and losartan. Jpn Heart J 36: 389–398

    PubMed  CAS  Google Scholar 

  • Traynor TR, Smart A, Briggs JP, Schnermann J (1999) Inhibition of macula densa-stimulated renin secretion by pharmacological blockade of cyclooxygenase-2. Am J Physiol Renal Physiol 277: F706–710

    CAS  Google Scholar 

  • Vallon V, Thomson S (1995) Inhibition of local nitric oxide synthase increases homeostatic efficiency of tubuloglomerular feedback. Am J Physiol Renal Physiol 269: F892–899

    CAS  Google Scholar 

  • Vallon V, Traynor T, Barajas L, Huang YG, Briggs JP, Schnermann J (2001) Feedback Control of Glomerular Vascular Tone in Neuronal Nitric Oxide Synthase Knockout Mice. J Am Soc Nephrol 12: 1599–1606

    PubMed  CAS  Google Scholar 

  • Vidal MJ, Romero JC, Vanhoutte PM (1988) Endothelium-derived relaxing factor inhibits renin release. Eur J Pharmacol 149: 401–402

    PubMed  CAS  Google Scholar 

  • Vio CP, Cespedes C, Gallardo P, Masferrer JL (1997) Renal identification of cyclooxygenase-2 in a subset of thick ascending limb cells. Hypertension 30: 687–692

    PubMed  CAS  Google Scholar 

  • Vitzthum H, Abt I, Einhellig S, Kurtz A (2002) Gene expression of prostanoid forming enzymes along the rat nephron. Kidney Int 62: 1570–1581

    PubMed  CAS  Google Scholar 

  • Wagner C, Pfeifer A, Ruth P, Hofmann F, Kurtz A (1998) Role of cGMP-kinase II in the control of renin secretion and renin expression. J Clin Invest 102: 1576–1582

    PubMed  CAS  Google Scholar 

  • Walker JP, Darvish A, Yeasting RA, Metting PJ (1995) Localization of AMP-specific cytosolic 5′-nucleotidase in the kidney: Regional sites of intracellular adenosine production. FASEB J 9: A843 (abstract)

    Google Scholar 

  • Wang D, Borrego-Conde LJ, Falck JR, Sharma KK, Wilcox CS, Umans JG (2003) Contributions of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles. Kidney Int 63: 2187–2193

    PubMed  CAS  Google Scholar 

  • Wang H, Carretero OA, Garvin JL (2002) Nitric oxide produced by THAL nitric oxide synthase inhibits TGF. Hypertension 39: 662–666

    PubMed  CAS  Google Scholar 

  • Wang H, Carretero OA, Garvin JL (2003) Inhibition of apical Na+/H+ exchangers on the macula densa cells augments tubuloglomerular feedback. Hypertension 41: 688–691

    PubMed  CAS  Google Scholar 

  • Wang JL, Cheng HF, Harris RC (1999) Cyclooxygenase-2 inhibition decreases renin content and lowers blood pressure in a model of renovascular hypertension. Hypertension 34: 96–101

    PubMed  CAS  Google Scholar 

  • Wang TF, Guidotti G (1996) CD39 is an ecto-(Ca2+,Mg2+)-apyrase. J Biol Chem 271: 9898–9901

    PubMed  CAS  Google Scholar 

  • Weaver DR, Reppert SM (1992) Adenosine receptor gene expression in rat kidney. Am J Physiol Renal Physiol 263: F991–995

    CAS  Google Scholar 

  • Weihprecht H, Lorenz JN, Schnermann J, Skott O, Briggs JP (1990) Effect of adenosine 1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus. J Clin Invest 85: 1622–1628

    PubMed  CAS  Google Scholar 

  • Weihprecht H, Lorenz JN, Briggs JP, Schnermann J (1992) Vasomotor effects of purinergic agonists in isolated rabbit afferent arterioles. Am J Physiol Renal Physiol 263: F1026–1033

    CAS  Google Scholar 

  • Welch WJ, Wilcox CS (1988) Modulating role for thromboxane in the tubuloglomerular feedback response in the rat. J Clin Invest 81: 1843–1849

    PubMed  CAS  Google Scholar 

  • Welch WJ, Wilcox CS (1990) Feedback responses during sequential inhibition of angiotensin and thromboxane. Am J Physiol Renal Physiol 258: F457–466

    CAS  Google Scholar 

  • Welch WJ, Tojo A, Wilcox CS (2000) Roles of NO and oxygen radicals in tubuloglomerular feedback in SHR. Am J Physiol Renal Physiol 278: F769–776

    PubMed  CAS  Google Scholar 

  • Wilcox CS, Welch WJ (2000) Interaction between nitric oxide and oxygen radicals in regulation of tubuloglomerular feedback. Acta Physiol Scand 168: 119–124

    PubMed  CAS  Google Scholar 

  • Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH (1992) Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci USA 89: 11993–11997

    PubMed  CAS  Google Scholar 

  • Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L (1999) Natriuretic and diuretic actions of a highly selective adenosine Al receptor antagonist. J Am Soc Nephrol 10: 714–720

    PubMed  CAS  Google Scholar 

  • Williams TC, Doherty AJ, Griffith DA, Jarvis SM (1989) Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex. Biochem J 264: 223–231

    PubMed  CAS  Google Scholar 

  • Wolf K, Castrop H, Hartner A, Goppelt-Strube M, Hilgers KF, Kurtz A (1999) Inhibition of the rennin-angiotensin system upregulates cyclooxygenase-2 expression in the macula densa. Hypertension 34: 503–507

    PubMed  CAS  Google Scholar 

  • Wu F, Li PL, Zou AP (1999) Microassay of 5′-nucleotidase and adenosine deaminase activity in microdissected nephron segments. Anal Biochem 266: 133–139

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Umemura S, Tamura K, Iwamoto T, Nyui N, Ishigami T, Ishii M (1995) Adenosine Al receptor mRNA in microdissected rat nephron segments. Hypertension 26: 1181–1185

    PubMed  CAS  Google Scholar 

  • Yang T, Singh I, Pham H, Sun D, Smart A, Schnermann JB, Briggs JP (1998) Regulation of cyclooxygenase expression in the kidney by dietary salt intake. Am J Physiol Renal Physiol 274: F481–489

    CAS  Google Scholar 

  • Yang T, Endo Y, Huang YG, Smart A, Briggs JP, Schnermann J (2000 a) Renin expression in COX-2-knockout mice on normal or low-salt diets. Am J Physiol Renal Physiol 279: F819–825

    PubMed  CAS  Google Scholar 

  • Yang T, Park JM, Arend L et al. (2000b) Low chloride stimulation of prostaglandin E2 release and cyclooxygenase-2 expression in a mouse macula densa cell line. J Biol Chem 275: 37922–37929

    PubMed  CAS  Google Scholar 

  • Yaqoob M, Edelstein CL, Wieder ED, Alkhunaizi AM, Gengaro PE, Nemenoff RA, Schrier RW (1996) Nitric oxide kinetics during hypoxia in proximal tubules: effects of acidosis and glycine. Kidney Int 49: 1314–1319

    PubMed  CAS  Google Scholar 

  • Zou AP, Imig JD, Ortiz de Montellano PR, Sui Z, Falck JR, Roman RJ (1994) Effect of P-450 omega-hydroxylase metabolites of arachidonic acid on tubuloglomerular feedback. Am J Physiol Renal Physiol 266: F934–941

    CAS  Google Scholar 

  • Zou AP, Nithipatikom K, Li PL, Cowley AW Jr (1999) Role of renal medullary adenosine in the control of blood flow and sodium excretion. Am J Physiol 276: R790–798

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schnermann, J., Castrop, H. (2006). Regulation vasomotorischer und sekretorischer Aktivität im juxtaglomerulären Apparat der Niere durch parakrine Faktoren. In: Ganten, D., Ruckpaul, K., Köhrle, J. (eds) Molekularmedizinische Grundlagen von para- und autokrinen Regulationsstörungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28782-5_16

Download citation

Publish with us

Policies and ethics