Skip to main content

Molekulare Regulation neuroendokriner Tumoren des Gastrointestinaltraktes

  • Chapter

Part of the book series: Molekulare Medizin ((MOLMED))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.4.9 Literatur

  • Ahmad T, Farnie G, Bundred NJ, Anderson NG (2004) The mitogenic action of insulin-like growth factor I in normal human mammary epithelial cells requires the epidermal growth factor receptor tyrosine kinase. J Biol Chem 279: 1713–1719

    PubMed  CAS  Google Scholar 

  • Arnold R, Simon B, Wied M (2000) Treatment of neuroendocrine GEP tumours with somatostatin analogues: A review. Digestion 62Suppl 1: 84–91

    PubMed  CAS  Google Scholar 

  • Arteaga CL (2002) Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7Suppl 4: 31–39

    PubMed  CAS  Google Scholar 

  • Baselga J (2002) Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7 Suppl 4: 2–8

    PubMed  CAS  Google Scholar 

  • Baselga J, Rischin D, Ranson M et al. (2002) Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 20: 4292–4302

    PubMed  CAS  Google Scholar 

  • Baserga R (1995) The insulin-like growth factor I receptor: A key to tumor growth? Cancer Res 55: 249–252

    PubMed  CAS  Google Scholar 

  • Blaker M, Weerth A de, Tometten M et al. (2002) Expression of the cholecystokinin 2-receptor in normal human thyroid gland and medullary thyroid carcinoma. Eur J Endocrinol 146: 89–96

    PubMed  CAS  Google Scholar 

  • Bol DK, Kiguchi K, Gimenez-Conti I, Rupp T, DiGiovanni J (1997) Overexpression of insulin-like growth factor-1 induces hyperplasia, dermal abnormalities, and spontaneous tumor formation in transgenic mice. Oncogene 14: 1725–1734

    PubMed  CAS  Google Scholar 

  • Bostwick DG, Roth KA, Barchas JD, Bensch KG (1984) Gastrin-releasing peptide immunoreactivity in intestinal carcinoids. Am J Clin Pathol 82: 428–431

    PubMed  CAS  Google Scholar 

  • Boyd M, Cunningham SH, Brown MM, Mairs RJ, Wheldon TE (1999) Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine. Gene Ther 6: 1147–1152

    PubMed  CAS  Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77–79

    PubMed  CAS  Google Scholar 

  • Buchegger F, Bonvin F, Kosinski M et al. (2003) Radiolabeled neurotensin analog, 99mTc-NT-XI, evaluated in ductal pancreatic adenocarcinoma patients. J Nucl Med 44: 1649–1654

    PubMed  CAS  Google Scholar 

  • Burke F, Smith PD, Crompton MR, Upton C, Balkwill FR (1999) Cytotoxic response of ovarian cancer cell lines to IFN-gamma is associated with sustained induction of IRF-1 and p21 mRNA. Br J Cancer 80: 1236–1244

    PubMed  CAS  Google Scholar 

  • Calender A (2000) Molecular genetics of neuroendocrine tumors. Digestion 62 Suppl 1: 3–18

    PubMed  CAS  Google Scholar 

  • Campiglio M, Locatelli A, Olgiati C et al. (2004) Inhibition of proliferation and induction of apoptosis in breast cancer cells by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor ZD1839 (‘Iressa’) is independent of EGFR expression level. J Cell Physiol 198: 259–268

    PubMed  CAS  Google Scholar 

  • Canavese G, Azzoni C, Pizzi S et al. (2001) p27: A potential main inhibitor of cell proliferation in digestive endocrine tumors but not a marker of benign behavior. Hum Pathol 32: 1094–1101

    PubMed  CAS  Google Scholar 

  • Cattaneo MG, Amoroso D, Gussoni G, Sanguini AM, Vicentini LM (1996) A somatostatin analogue inhibits MAP kinase activation and cell proliferation in human neuroblastoma and in human small cell lung carcinoma cell lines. FEBS Lett 397: 164–168

    PubMed  CAS  Google Scholar 

  • Charland S, Boucher MJ, Houde M, Rivard N (2001) Somatostatin inhibits Akt phosphorylation and cell cycle entry, but not p42/p44 mitogen-activated protein (MAP) kinase activation in normal and tumoral pancreatic acinar cells. Endocrinology 142: 121–128

    PubMed  CAS  Google Scholar 

  • Cheung NW, Boyages SC (1995) Somatostatin-14 and its analog octreotide exert a cytostatic effect on GH3 rat pituitary tumor cell proliferation via a transient G0/G1 cell cycle block. Endocrinology 136: 4174–4181

    PubMed  CAS  Google Scholar 

  • Ciardiello F, Caputo R, Bianco R et al. (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6: 2053–2063

    PubMed  CAS  Google Scholar 

  • Cohen EE, Rosen F, Stadler WM, Recant W, Stenson K, Huo D, Vokes EE (2003) Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 21: 1980–1987

    PubMed  CAS  Google Scholar 

  • Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316: 823–826

    PubMed  CAS  Google Scholar 

  • D’Adda T, Pizzi S, Azzoni C et al. (2002) Different patterns of 11q allelic losses in digestive endocrine tumors. Hum Pathol 33: 322–329

    PubMed  CAS  Google Scholar 

  • Dacic S, Finkelstein SD, Baksh FK, Swalsky PA, Barnes LE, Yousem SA (2002) Small-cell neuroendocrine carcinoma displays unique profiles of tumor-suppressor gene loss in relationship to the primary site of formation. Hum Pathol 33: 927–932

    PubMed  CAS  Google Scholar 

  • Detjen KM, Welzel M, Farwig K et al. (2000) Molecular mechanism of interferon alfa-mediated growth inhibition in human neuroendocrine tumor cells. Gastroenterology 118: 735–748

    PubMed  CAS  Google Scholar 

  • Detjen KM, Farwig K, Welzel M, Wiedenmann B, Rosewicz S (2001) Interferon gamma inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis. Gut 49: 251–262

    PubMed  CAS  Google Scholar 

  • Ebert MP, Hoffmann J, Schneider-Stock R et al. (1998) Analysis of K-ras gene mutations in rare pancreatic and ampullary tumours. Eur J Gastroenterol Hepatol 10: 1025–1029

    PubMed  CAS  Google Scholar 

  • Fernando NH, Hurwitz HI (2003) Inhibition of vascular endothelial growth factor in the treatment of colorectal cancer. Semin Oncol 30: 39–50

    PubMed  CAS  Google Scholar 

  • Fujimori M, Ikeda S, Shimizu Y, Okajima M, Asahara T (2001) Accumulation of beta-catenin protein and mutations in exon 3 of beta-catenin gene in gastrointestinal carcinoid tumor. Cancer Res 61: 6656–6659

    PubMed  CAS  Google Scholar 

  • Grabowski P, Griss S, Arnold CN et al. (2005) Nuclear survivin is a powerful novel prognostic marker in neuroendocrine gastroenteropancreatic tumor disease. Neuroendocrinology 81: 1–9

    PubMed  CAS  Google Scholar 

  • Granberg D, Wilander E, Öberg K, Skogseid B (2000) Prognostic markers in patients with typical bronchial carcinoid tumors. J Clin Endocrinol Metab 85: 3425–3430

    PubMed  CAS  Google Scholar 

  • Grander D, Sangfelt O, Erickson S (1997) How does interferon exert its cell growth inhibitory effect? Eur J Haematol 59: 129–135

    PubMed  CAS  Google Scholar 

  • Hannon JP, Langenegger D, Waser B, Hoyer D, Reubi JC (2001) Lack of evidence for cross-competition between vasoactive intestinal peptide and somatostatin at their respective receptors. Eur J Pharmacol 426: 165–173

    PubMed  CAS  Google Scholar 

  • Harmar AJ, Arimura A, Gozes I et al. (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50: 265–270

    PubMed  CAS  Google Scholar 

  • Hennig IM, Laissue JA, Horisberger U, Reubi JC (1995) Substance-P receptors in human primary neoplasms: Tumoral and vascular localization. Int J Cancer 61: 786–792

    PubMed  CAS  Google Scholar 

  • Herbst RS (2002) ZD1839: Targeting the epidermal growth factor receptor in cancer therapy. Expert Opin Investig Drugs 11: 837–849

    PubMed  CAS  Google Scholar 

  • Hessenius C, Bader M, Meinhold H, Bohmig M, Faiss S, Reubi JC, Wiedenmann B (2000) Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours. Eur J Nucl Med 27: 1684–1693

    PubMed  CAS  Google Scholar 

  • Hoegerle S, Altehoefer C, Ghanem N et al. (2001) Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 220: 373–380

    PubMed  CAS  Google Scholar 

  • Höpfner M, Sutter AP, Beck NI et al. (2002) Metaiodoben-zylguanidine induces growth inhibition and apoptosis of neuroendocrine gastrointestinal tumor cells. Int J Cancer 101: 210–216

    PubMed  Google Scholar 

  • Höpfner M, Sutter AP, Gerst B, Zeitz M, Scherübl H (2003) A novel approach in the treatment of neuroendocrine gastrointestinal tumours. Targeting the epidermal growth factor receptor by gefitinib (ZD1839). Br J Cancer 89: 1766–177

    PubMed  Google Scholar 

  • Höpfner M, Sutter AP, Hüther A, Ahnert-Hilger G, Scherübl H (2004) A novel approach in the treatment of neuroendocrine gastrointestinal tumor cells: Additive antiproliferative effects of interferon-gamma and meta-iodobenzyl guanidine. BMC Cancer 4: 23–37

    PubMed  Google Scholar 

  • Hoshiya Y, Gupta V, Kawakubo H et al. (2003) Mullerian inhibiting substance promotes interferon gamma-induced gene expression and apoptosis in breast cancer cells. J Biol Chem 278: 51703–51712

    PubMed  CAS  Google Scholar 

  • Huang SM, Li J, Armstrong EA, Harari PM (2002) Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 62: 4300–4306

    PubMed  CAS  Google Scholar 

  • Ishizuka J, Beauchamp RD, Townsend CM Jr, Greeley GH Jr, Thompson JC (1992) Receptor-mediated autocrine growth-stimulatory effect of 5-hydroxytryptamine on cultured human pancreatic carcinoid cells. J Cell Physiol 150: 1–7

    PubMed  CAS  Google Scholar 

  • Ishizuka J, Beauchamp RD, Sato K, Townsend CM Jr, Thompson JC (1993) Novel action of transforming growth factor beta 1 in functioning human pancreatic carcinoid cells. J. Cell Physiol 156: 112–118

    PubMed  CAS  Google Scholar 

  • Johnson LR (1988) Regulation of gastrointestinal mucosal growth. Physiol Rev 68: 456–502

    PubMed  CAS  Google Scholar 

  • Kalvakolanu DV (2003) Alternate interferon signaling pathways. Pharmacol Ther 100: 1–29

    PubMed  CAS  Google Scholar 

  • Kim KB, Choi YH, Kim IK et al. (2002) Potentiation of Fas and TRAIL-mediated apoptosis by IFN-gamma in A549 lung epithelial cells: Enhancement of caspase-8 expression through IFN-response element. Cytokine 20: 283–288

    PubMed  CAS  Google Scholar 

  • Kominsky S, Johnson HM, Bryan G, Tanabe T, Hobeika AC, Subramaniam PS, Torres B (1998) IFNgamma inhibition of cell growth in glioblastomas correlates with increased levels of the cyclin dependent kinase inhibitor p21WAF1/CIP1. Oncogene 17: 2973–2979

    PubMed  CAS  Google Scholar 

  • Konno H, Arai T, Tanaka T et al. (1998) Antitumor effect of a neutralizing antibody to vascular endothelial growth factor on liver metastasis of endocrine neoplasm. Jpn J Cancer Res 89: 933–939

    PubMed  CAS  Google Scholar 

  • Kulaksiz H, Eissele R, Rossler D, Schulz S, Hollt V, Cetin Y, Arnold R (2002) Identification of somatostatin receptor subtypes 1, 2 A, 3, and 5 in neuroendocrine tumours with subtype specific antibodies. Gut 50: 52–60

    PubMed  CAS  Google Scholar 

  • Kytola S, Hoog A, Nord B, Cedermark B, Frisk T, Larsson C, Kjellman M (2001) Comparative genomic hybridization identifies loss of 18q22-qter as an early and specific event in tumorigenesis of midgut carcinoids. Am J Pathol 158: 1803–1808

    PubMed  CAS  Google Scholar 

  • Lahlou H, Saint-Laurent N, Esteve JP, Eychene A, Pradayrol L, Pyronnet S, Susini C (2003) sst2 Somatostatin receptor inhibits cell proliferation through Ras-, Rapl-, and B-Raf-dependent ERK2 activation. J Biol Chem 278: 39356–39371

    PubMed  CAS  Google Scholar 

  • Lemmer K, Ahnert-Hilger G, Hopfner M et al. (2002) Expression of dopamine receptors and transporter in neuroendocrine gastrointestinal tumor cells. Life Sci 71: 667–678

    PubMed  CAS  Google Scholar 

  • Leotlela PD, Jauch A, Holtgreve-Grez H, Thakker RV (2003) Genetics of neuroendocrine and carcinoid tumours. Endocr. Relat Cancer 10: 437–450

    PubMed  CAS  Google Scholar 

  • Löllgen RM, Hessman O, Szabo E, Westin G, Akerstrom G (2001) Chromosome 18 deletions are common events in classical midgut carcinoid tumors. Int J Cancer 92: 812–815

    PubMed  Google Scholar 

  • Lopez F, Esteve JP, Buscail L et al. (1997) The tyrosine phosphatase SHP-1 associates with the sst2 somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling. J Biol Chem 272: 24448–24454

    PubMed  CAS  Google Scholar 

  • Lubomierski N, Kersting M, Bert T et al. (2001) Tumor suppressor genes in the 9p21 gene cluster are selective targets of inactivation in neuroendocrine gastroenteropancreatic tumors. Cancer Res 61: 5905–5910

    PubMed  CAS  Google Scholar 

  • Mendelsohn J (2002) Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol 20: 1S–13S

    PubMed  CAS  Google Scholar 

  • Meyers MB, Shen WP, Spengler BA et al. (1988) Increased expression of epidermal growth factor receptor in multi-drug-resistant human neuroblastoma cells. J Cell Biochem 38: 87–97

    PubMed  CAS  Google Scholar 

  • Moody TW, Chan D, Fahrenkrug J, Jensen RT (2003) Neuropeptides as autocrine growth factors in cancer cells. Curr Pharm Des 9: 495–509

    PubMed  CAS  Google Scholar 

  • Moore PS, Missiaglia E, Antonello D et al. (2001) Role of disease-causing genes in sporadic pancreatic endocrine tumors: MEN1 and VHL. Genes Chromosomes Cancer 32: 177–181

    PubMed  CAS  Google Scholar 

  • Muscarella P, Melvin WS, Fisher WE et al. (1998) Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: An analysis of p16/MTSl tumor suppressor gene inactivation. Cancer Res 58: 237–240

    PubMed  CAS  Google Scholar 

  • Nagata S (1998) Fas-induced apoptosis. Intern Med 37: 179–181

    PubMed  CAS  Google Scholar 

  • Nilsson O, Wangberg B, Kolby L, Schultz GS, Ahlman H (1995) Expression of transforming growth factor alpha and its receptor in human neuroendocrine tumours. Int J Cancer 60: 645–651

    PubMed  CAS  Google Scholar 

  • Nilsson O, Wangberg B, Theodorsson E, Skottner A, Ahlman H (1992) Presence of IGF-I in human midgut carcinoid tumours — an autocrine regulator of carcinoid tumour growth? Int J Cancer 51: 195–203

    PubMed  CAS  Google Scholar 

  • O’Dorisio MS, Fleshman DJ, Qualman SJ, O’Dorisio TM (1992) Vasoactive intestinal peptide: Autocrine growth factor in neuroblastoma. Regul Pept 37: 213–226

    PubMed  CAS  Google Scholar 

  • Öberg K (1992) Interferons in the management of neuroendocrine tumors and their possible mechanism of action. Yale J Biol Med 65: 519–529

    PubMed  Google Scholar 

  • Öberg K (1994) Expression of growth factors and their receptors in neuroendocrine gut and pancreatic tumors, and prognostic factors for survival. Ann NY Acad Sci 733: 46–55

    PubMed  Google Scholar 

  • Olivier B, Soudijn W, van Wijngaarden I (2000) Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors. Prog Drug Res 54: 59–119

    PubMed  CAS  Google Scholar 

  • Onuki N, Wistuba II, Travis WD et al. (1999) Genetic changes in the spectrum of neuroendocrine lung tumors. Cancer 85: 600–607

    PubMed  CAS  Google Scholar 

  • Pagliacci MC, Tognellini R, Grignani F, Nicoletti I (1991) Inhibition of human breast cancer cell (MCF-7) growth in vitro by the somatostatin analog SMS 201-995: Effects on cell cycle parameters and apoptotic cell death. Endocrinology 129: 2555–2562

    PubMed  CAS  Google Scholar 

  • Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20: 157–198

    PubMed  CAS  Google Scholar 

  • Pincus DW, DiCicco-Bloom EM, Black IB (1990) Vasoactive intestinal peptide regulates mitosis, differentiation and survival of cultured sympathetic neuroblasts. Nature 343: 564–567

    PubMed  CAS  Google Scholar 

  • Racke K, Reimann A, Schworer H, Kilbinger H (1996) Regulation of 5-HT release from enterochromaffin cells. Behav Brain Res 73: 83–87

    PubMed  CAS  Google Scholar 

  • Reubi JC (2000) In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues. Clinical implications. Ann NY Acad Sci 921: 1–25

    PubMed  CAS  Google Scholar 

  • Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24: 389–427

    PubMed  CAS  Google Scholar 

  • Reubi JC, Waser B, Schaer JC, Laissue JA (1999) Neurotensin receptors in human neoplasms: high incidence in Ewing’s sarcomas. Int J Cancer 82: 213–218

    PubMed  CAS  Google Scholar 

  • Reubi JC, Waser B, Liu Q, Laissue JA, Schonbrunn A (2000) Subcellular distribution of somatostatin sst2 A receptors in human tumors of the nervous and neuroendocrine systems: Membranous versus intracellular location. J Clin Endocrinol Metab 85: 3882–3891

    PubMed  CAS  Google Scholar 

  • Schally AV, Comaru-Schally AM, Nagy A et al. (2001) Hypothalamic hormones and cancer. Front Neuroendocrinol 22: 248–291

    PubMed  CAS  Google Scholar 

  • Scherübl H, Hescheler J, Riecken EO (1993) Molecular mechanisms of somatostatin’s inhibition of hormone release: participation of voltage-gated calcium channels and G-proteins. Horm Metab Res Suppl 27: 1–4

    Google Scholar 

  • Scherübl H, Schaaf L, Raue F, Faiss S, Zeitz M (2004 a) Here-ditary neuroendocrine gastroenteropancreatic tumors and multiple endocrine neoplasia type 1. Part one: Diagnosis. Dtsch Med Wochenschr 129: 630–633

    PubMed  Google Scholar 

  • Scherübl H, Schaaf L, Raue F, Faiss S, Zeitz M (2004b) Hereditary neuroendocrine gastroenteropancreatic tumors and multiple endocrine neoplasia type 1. Dtsch Med Wochenschr 129: 689–692

    PubMed  Google Scholar 

  • Scott N, Millward E, Cartwright EJ, Preston SR, Coletta PL (2004) Gastrin releasing peptide and gastrin releasing peptide receptor expression in gastrointestinal carcinoid tumours. J Clin Pathol 57: 189–192

    PubMed  CAS  Google Scholar 

  • Serrano J, Goebel SU, Peghini PL, Lubensky IA, Gibril F, Jensen RT (2000) Alterations in the p16INK4a/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab 85: 4146–4156

    PubMed  CAS  Google Scholar 

  • Shimizu T, Tanaka S, Haruma K et al. (2000) Growth characteristics of rectal carcinoid tumors. Oncology 59: 229–237

    PubMed  CAS  Google Scholar 

  • Smets LA, Bout B, Wisse J (1988) Cytotoxic and antitumor effects of the norepinephrine analogue metaiodo-benzyl-guanidine (MIBG). Cancer Chemother Pharmacol 21: 9–13

    PubMed  CAS  Google Scholar 

  • Stuart K, Levy DE, Anderson T et al. (2004) Phase II study of interferon gamma in malignant carcinoid tumors (E9292): A trial of the Eastern Cooperative Oncology Group. Invest New Drugs 22: 75–81

    PubMed  CAS  Google Scholar 

  • Szepeshazi K, Schally AV, Halmos G, Sun B, Hebert F, Csernus B, Nagy A (2001) Targeting of cytotoxic somatostatin analog AN-238 to somatostatin receptor subtypes 5 and/ or 3 in experimental pancreatic cancers. Clin Cancer Res 7: 2854–2861

    PubMed  CAS  Google Scholar 

  • Taal BG, Hoefnagel CA, Valdes Olmos RA, Boot H, Beijnen JH (1996) Palliative effect of metaiodobenzylguanidine in metastatic carcinoid tumors. J Clin Oncol 14: 1829–1838

    PubMed  CAS  Google Scholar 

  • Takikawa O, Kuroiwa T, Yamazaki F, Kido R (1988) Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J Biol Chem 263: 2041–2048

    PubMed  CAS  Google Scholar 

  • Terris B, Scoazec JY, Rubbia L et al. (1998) Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology 32: 133–138

    PubMed  CAS  Google Scholar 

  • Toi-Scott M, Jones CL, Kane MA (1996) Clinical correlates of bombesin-like peptide receptor subtype expression in human lung cancer cells. Lung Cancer 15: 341–354

    PubMed  CAS  Google Scholar 

  • Ulrich CD, Holtmann M, Miller LJ (1998) Secretin and vasoactive intestinal peptide receptors: Members of a unique family of G protein-coupled receptors. Gastroenterology 114: 382–397

    PubMed  CAS  Google Scholar 

  • Van WC de, Dumont F, Vanden Broecke R et al. (2000) Technetium-99 m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: A feasibility study. Eur J Nucl Med 27: 1694–1699

    Google Scholar 

  • Virgolini I, Yang Q, Li S et al. (1994) Cross-competition between vasoactive intestinal peptide and somatostatin for binding to tumor cell membrane receptors. Cancer Res 54: 690–700

    PubMed  CAS  Google Scholar 

  • Virgolini I, Traub T, Leimer M et al. (2000) New radiopharmaceuticals for receptor scintigraphy and radionuclide therapy. Q J Nucl Med 44: 50–58

    PubMed  CAS  Google Scholar 

  • Wichert G von, Jehle PM, Hoeflich A et al. (2000) Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Cancer Res 60: 4573–4581

    Google Scholar 

  • Wakeling AE, Barker AJ, Davies DH, Brown DS, Green LR, Cartlidge SA, Woodburn JR (1996) Specific inhibition of epidermal growth factor receptor tyrosine kinase by 4-anilinoquinazolines. Breast Cancer Res Treat 38: 67–73

    PubMed  CAS  Google Scholar 

  • Wang DG, Johnston CF, Buchanan KD (1997) Oncogene expression in gastroenteropancreatic neuroendocrine tumors: Implications for pathogenesis. Cancer 80: 668–675

    PubMed  CAS  Google Scholar 

  • Williams ED, Sandier M (1963) The classification of carcinoid tumours. Lancet 238–239

    Google Scholar 

  • Wimmel A, Wiedenmann B, Rosewicz S (2003) Autocrine growth inhibition by transforming growth factor beta-1 (TGFbeta-1) in human neuroendocrine tumour cells. Gut 52: 1308–1316

    PubMed  CAS  Google Scholar 

  • Zhou Y, Gobl A, Wang S et al. (1998) Expression of p68 protein kinase and its prognostic significance during IFN-alpha therapy in patients with carcinoid tumours. Eur J Cancer 34: 2046–2052

    PubMed  CAS  Google Scholar 

  • Zuetenhorst H, Taal BG, Boot H, Valdes OR, Hoefnagel C (1999) Longterm palliation in metastatic carcinoid tumours with various applications of meta-iodobenzylguanidin (MIBG): Pharmacological MIBG, 131I-labelled MIBG and the combination. Eur J Gastroenterol Hepatol 11: 1157–1164

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grabowski, P., Sutter, A.P., Scherübl, H. (2006). Molekulare Regulation neuroendokriner Tumoren des Gastrointestinaltraktes. In: Ganten, D., Ruckpaul, K., Köhrle, J. (eds) Molekularmedizinische Grundlagen von para- und autokrinen Regulationsstörungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28782-5_12

Download citation

Publish with us

Policies and ethics