Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 1460 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.1.6 Literatur

  • Allaerts W, Carmeliet P, Denef C (1990) New perspectives in the function of pituitary folliculo-stellate cells. Mol Cell Endocrinol 71: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Allaerts W, Fluitsma DM, Hoefsmit ECM et al. (1996) Immunohistochemical, morphological and ultrastrucural resemblance between dendritic cells and folliculo-stellate cells in normal human and rat anterior pituitary. J Neuroendocrinol 8: 17–29

    PubMed  CAS  Google Scholar 

  • Alvaro D, Onori P, Metalli VD et al. (2002) Intracellular pathways mediating estrogen-induced cholangiocyte proliferation in the rat. Hepatology 36(2): 297–304

    Article  PubMed  CAS  Google Scholar 

  • Anderson E, Clarke RB Jr (2004) Mammary Gland Biology and Neoplasia. Mammary Gland Biology and Neoplasia 9

    Google Scholar 

  • Araki O, Morimura T, Ogiwara T, Mizuma H, Mori M, Murakami M (2003) Expression of Type 2 Iodothyronine Deiodinase in Corticotropin-Secreting Mouse Pituitary Tumor Cells Is Stimulated by Glucocorticoid and Corticotropin-Releasing Hormone. Endocrinology 144(10): 4459–4465

    Article  PubMed  CAS  Google Scholar 

  • Arntzenius AB, Smit LJ, Schipper J, Van der Heide D (1991) Inverse relation between iodine intake and thyroid blood flow: color doppler flow imaging in euthyroid humans. J Clin Endocrinol Metab 73: 1051–1055

    PubMed  CAS  Google Scholar 

  • Azmitia EC (2001) Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res Bull 56(5): 413–424

    Article  PubMed  CAS  Google Scholar 

  • Baur A, Köhrle J (1999) Type I 5′-deiodinase is stimulated by iodothyronines and involved in thyroid hormone metabolism in human somatomammotroph GX cells. Eur J Endocrinol 140: 367–370

    Article  PubMed  CAS  Google Scholar 

  • Baur A, Bauer K, Jarry H, Köhrle J (1997) 3,5-Di-iodo-L-thyronine stimulates type I 5′-deiodinase activity in rat anterior pituitaries in vivo and in reaggregate cultures and GH3 cells in vitro. Endocrinology 138: 3242–3248

    Article  PubMed  CAS  Google Scholar 

  • Baur A, Bauer K, Jarry H, Köhrle J (2000) Effects of proinflammatory cytokines on anterior pituitary 5′-deiodinase type I and type II. J Endocrinol 167(3): 505–515

    Article  PubMed  CAS  Google Scholar 

  • Baur A, Buchfelder M, Köhrle J (2002) Expression of 5′-deiodinase enzymes in normal pituitaries and in various human pituitary adenomas. Eur J Endocrinol 147(2): 263–268

    Article  PubMed  CAS  Google Scholar 

  • Benter S, Leonhardt S, Wuttke W, Jarry H (1995) Paracrine cell to cell interactions determine the effects of pituitary adenylate cyclase activating polypeptide (PACAP) on in vitro prolactin release from rat pituitary cells. Exp Clin Endocrinol Diabetes 103: 386–390

    PubMed  CAS  Google Scholar 

  • Bernal J (2002) Action of thyroid hormone in brain. J Endocrinol Invest 25(3): 268–288

    PubMed  CAS  Google Scholar 

  • Bernal J (2005) The significance of thyroid hormone transporters in the brain. Endocrinology 146(4): 1698–1700

    Article  PubMed  CAS  Google Scholar 

  • Berthold AA (1849) Transplantation der Hoden. Arch Anat Physiol Wiss Med 16: 42–46

    Google Scholar 

  • Beuschlein F, Looyenga BD, Reincke M, Hammer GD (2004) Role of the inhibin/activin system and luteinizing hormone in adrenocortical tumorigenesis. Horm Metab Res 36(6): 392–396

    Article  PubMed  CAS  Google Scholar 

  • Blau HB, Baltimore D (1991) Differentiation requires continuous regulation. J Cell Biol 112: 781–783

    Article  PubMed  CAS  Google Scholar 

  • Boelen A, Kwakkel J, Platvoet-Ter Schiphorst M, Baur A, Köhrle J, Wiersinga WM (2004 a) Contribution of interleukin-12 to the pathogenesis of non-thyroidal illness. Horm Metab Res 36(2): 101–106

    Article  PubMed  CAS  Google Scholar 

  • Boelen A, Kwakkel J, Thijssen-Timmer DC, Alkemade A, Fliers E, Wiersinga WM (2004 b) Simultaneous changes in central and peripheral components of the hypothalamus-pituitary-thyroid axis in lipopolysaccharide-induced acute illness in mice. J Endocrinol 182(2): 315–323

    Article  PubMed  CAS  Google Scholar 

  • Brabant G, Bergmann P, Kirsch CM, Köhrle J, Hesch RD, Von zur Mühlen A (1992) Alterations in the temporal pattern of thyrotropin and thyroglobulin secretion in man with experimental iodine depletion. Metabolism 41: 1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Brokken LJ, Bakker O, Wiersinga WM, Prummel MF (2005) Functional Thyrotropin Receptor Expression in the Pituitary Folliculo-Stellate Cell Line TtT/GF. Exp Clin Endocrinol Diabetes 113(1): 13–20

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Brown DD (2004) Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis. Dev Biol 266(1): 87–95

    Article  PubMed  CAS  Google Scholar 

  • Cannon WB (1932) The Wisdom of the Body. Norton, New York

    Google Scholar 

  • Casas F, Daury L, Grandemange S et al. (2003) Endocrine regulation of mitochondrial activity: Involvement of truncated RXR{alpha} and c-Erb A{alpha}l proteins. FASEB J 17(3): 426–436

    Article  PubMed  CAS  Google Scholar 

  • Chin WW, Carr FE, Burnside J, Darling DS (1993) Thyroid hormone regulation of thyrotropin gene expression. Recent Prog Horm Res 48: 393–414

    PubMed  CAS  Google Scholar 

  • Conrad KP, Novak J (2004) Emerging role of relaxin in renal and cardiovascular function. Am J Physiol Regul Integr Comp Physiol 287(2): R250–R261

    PubMed  CAS  Google Scholar 

  • Danila DC, Zhang X, Zhou Y et al. (2000) A human pituitary tumor-derived folliculostellate cell line. J Clin Endocrinol Metab 85(3): 1180–1187

    Article  PubMed  CAS  Google Scholar 

  • Denef C (1994) Paracrine mechanisms in the pituitary. In: Imura J (ed) The pituitary gland. Raven, New York, pp 351–357

    Google Scholar 

  • Denef C, Maertens P, Allaerts W et al. (1989) Cell to cell communication in peptide target cells of anterior pituitary. Methods Enzymol 168: 47–71

    PubMed  CAS  Google Scholar 

  • Dontu G, El Ashry D, Wicha MS (2004) Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 15(5): 193–197

    Article  PubMed  CAS  Google Scholar 

  • Dyess EM, Segerson TP, Liposits Z et al. (1988) Triiodothyronine exerts direct cell-specific regulation of thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus. Endocrinololy 123: 2291–2297

    Article  CAS  Google Scholar 

  • Eggo MC, Quiney VM, Campbell S (2003) Local factors regulating growth and function of human thyroid cells in vitro and in vivo. Mol Cell Endocrinol 213(1): 47–58

    Article  PubMed  CAS  Google Scholar 

  • Fauquier T, Lacampagne A, Travo P, Bauer K, Mollard P (2002) Hidden face of the anterior pituitary. Trends Endocrinol Metab 13(7): 304–309

    Article  PubMed  CAS  Google Scholar 

  • Fiaschi-Taesch NM, Stewart AF (2003) Minireview: Parathyroid Hormone-Related Protein as an Intracrine Factor-Trafficking Mechanisms and Functional Consequences. Endocrinology 144(2): 407–411

    Article  PubMed  CAS  Google Scholar 

  • Forrest D, Reh TA, Rusch A (2002) Neurodevelopmental control by thyroid hormone receptors. Curr Opin Neurobiol 12(1): 49–56

    Article  PubMed  CAS  Google Scholar 

  • Friesema EC, Grueters A, Biebermann H et al. (2004) Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364(9443): 1435–1437

    Article  PubMed  CAS  Google Scholar 

  • Fujita H (1988) Functional morphology of the thyroid. Int Rev Cytol 113: 145–186

    PubMed  CAS  Google Scholar 

  • Fujita H, Murakami T (1974) Scanning electron microscopy on the distribution of the minute blood vessels in the thyroid gland of the dog, rat, and rhesus monkey. Arch Histol Jap 36: 181–188

    PubMed  CAS  Google Scholar 

  • Gärtner R (1993) Growth factors of the thyroid. Exp Clin Endocrinol 101: 83–91

    Google Scholar 

  • Gärtner R, Schopohl D, Schaefer S et al. (1997) Regulation of transforming growth factor β1 messenger ribonucleic acid expression in porcine thyroid follicles in vitro by growth factors, iodine, or δ-iodolactone. Thyroid 7(4): 633–640

    Article  PubMed  Google Scholar 

  • Glaser S, Benedetti A, Marucci L et al. (2000) Gastrin inhibits cholangiocyte growth in bile duct-ligated rats by interaction with cholecystokinin-B/Gastrin receptors via D-myo-inositol 1,4,5-triphosphate-, Ca(2+)-, and protein kinase C alpha-dependent mechanisms. Hepatology 32(1): 17–25

    Article  PubMed  CAS  Google Scholar 

  • Guillemin R (2005) Hypothalamic hormones a.k.a. hypothalamic releasing factors. J Endocrinol 184(1): 11–28

    Article  PubMed  CAS  Google Scholar 

  • He W, Miao FJP, Lin DCH et al. (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429(6988): 188–193

    Article  PubMed  CAS  Google Scholar 

  • Henderson J (2005) Ernest Starling and ‘Hormones’: An historical commentary. J Endocrinol 184(1): 5–10

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M (2005) Folliculo-stellate (FS) cells of the anterior pituitary mediate interactions between the endocrine and immune systems. Endocrinology 146(1): 33–34

    Article  PubMed  CAS  Google Scholar 

  • Heuer H, Maier MK, Iden S et al. (2005) The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone sensitive neuron populations. Endocrinology 146(4): 1701–1706

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6(3): 201–214

    Article  PubMed  CAS  Google Scholar 

  • Hofbauer LC, Rafferzeder M, Janssen OE, Gärtner R (1995) Insulin-like growth factor I messenger ribonucleic acid expression in porcine thyroid follicles is regulated by thyrotropin and iodine. Eur J Endocrinol 132: 605–610

    PubMed  CAS  Google Scholar 

  • Horvath E, Kovacs K (2002) Folliculo-stellate cells of the human pituitary: a type of adult stem cell? Ultrastruct Pathol 26(4): 219–228

    Article  PubMed  Google Scholar 

  • Houben H, Denef C (1990) Regulatory peptides produced in the anterior pituitary. TEM(November/December): 398–403

    Google Scholar 

  • Houben H, Denef C (1994) Bioactive peptides in anterior pituitary cells. Peptides 15: 547–582

    Article  PubMed  CAS  Google Scholar 

  • Imada M, Kurosumi M, Fujita H (1986) Three-dimensional aspects of blood vessels in thyroids from normal, low iodine diet-treated, TSH-treated, and PTU-treated rats. Cell Tissue Res 245(2): 291–296

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Matsumoto H, Koyama C, Shibata K, Nakazato Y, Ito A (1992) Establishment of a folliculo-stellate-like cell line from murine thyrotropic pituitary tumor. Endocrinology 131: 3110–3116

    Article  PubMed  CAS  Google Scholar 

  • Jankowski V, Tolle M, Vanholder R et al. (2005) Uridine adenosine tetraphosphate: A novel endothelium-derived vasoconstrictive factor. Nat Med 11(2): 223–227

    Article  PubMed  CAS  Google Scholar 

  • Javitt NB (2004) Oxysteroids: A new class of steroids with autocrine and paracrine functions. Trends Endocrinol Metab 15(8): 393–397

    Article  PubMed  CAS  Google Scholar 

  • Jones PM, Ghatei MA, Wallis SC, Bloom SR (1994) Differential response of neuropeptide Y, substance P and vasoactive intestinal polypeptide in the rat anterior pituitary gland to alterations in thyroid hormone status. J Endocrinol 143: 393–397

    PubMed  CAS  Google Scholar 

  • Jones TH, Brown BL, Dobson PRM (1990) Paracrine control of anterior pituitary hormone secretion. J Endocrinol 127: 5–13

    PubMed  CAS  Google Scholar 

  • Kakar SS, Winters SJ, Zacharias W, Miller DM, Flynn S (2003) Identification of distinct gene expression profiles associated with treatment of LbetaT2 cells with gonadotropin-releasing hormone agonist using microarray analysis. Gene 308: 67–77

    Article  PubMed  CAS  Google Scholar 

  • Kezele P, Nilsson E, Skinner MK (2002) Cell-cell interactions in primordial follicle assembly and development. Frontiers Bioscience 7: 1990–1996

    Google Scholar 

  • Kim SW, Harney JW, Larsen PR (1998) Studies of the hormonal regulation of type 2 5′-iodothyronine deiodinase messenger ribonucleic acid in pituitary tumor cells using semiquantitative reverse transcription polymerase reaction. Endocrinology 139: 4895–4905

    Article  PubMed  CAS  Google Scholar 

  • Koenig RJ, Watson AY (1984) Enrichment of rat anterior pituitary cell types by metrizamide density gradient centrifugation. Endocrinology 115: 317–323

    PubMed  CAS  Google Scholar 

  • Köhrle J (2000 a) Thyroid hormone metabolism and action in the brain and pituitary. Acta Med Austriaca 27(1): 1–7

    PubMed  Google Scholar 

  • Köhrle J (2000b) Wirkungsmechanismen der Schilddrüsenhormone. In: Ziegler R, Weinheimer B, Decker G (Hrsg) Schilddrüse 1999. de Gruyter, Berlin, pp 1–25

    Google Scholar 

  • Köhrle J (2002) Iodothyronine deiodinases. Methods Enzymol 347: 125–167

    PubMed  Google Scholar 

  • Köhrle J (2003) Fetal thyroid hormone provision: the role of placental transport and deiodination of thyroid hormones. In: Morreale de Escobar G, De Vijlder JJ, Butz S, Hostalek U (eds) The thyroid and brain. Schattauer, Stuttgart, pp 67–82

    Google Scholar 

  • Köhrle J, Schmutzler C (2004) Iodstoffwechsel, Schilddrüsenhormonsynthese und —sekretion. In: Gärtner R (Hrsg) Schilddrüsenerkrankungen: Grundlagen — Diagnostik — Therapie. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 16–51

    Google Scholar 

  • Köhrle J, Schomburg L, Drescher S, Fekete E, Bauer K (1995) Rapid stimulation of type I 5′-deiodinase in rat pituitaries by 3,3′,5-triiodo-L-thyronine. Mol Cell Endocrinol 108: 17–21

    Article  PubMed  Google Scholar 

  • Köhrle J, Jakob F, Schmutzler C, Schütze N (1999) Angiogenesis and Vascular Remodelling in the Human Thyroid. In: Nawroth P, Seibel M, Ziegler R (eds) The vascular system in thyroid disease. Berliner Medizinische Verlagsanstalt, pp 29–39

    Google Scholar 

  • Krantic S, Goddard I, Saveanu A et al. (2004) Novel modalities of somatostatin actions. Eur J Endocrinol 151(6): 643–655

    Article  PubMed  CAS  Google Scholar 

  • Labrie F, Luu-The V, Labrie C et al. (2003) Endocrine and intracrine sources of androgens in women: Inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr Rev 24(2): 152–182

    Article  PubMed  CAS  Google Scholar 

  • Larsen PR, Silva JE, Kaplan MM (1981) Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocr Rev 2: 87–102

    PubMed  CAS  Google Scholar 

  • Lechan RM, Qi Y, Jackson IMD, Mahdavi V (1994) Identification of thyroid hormone receptor isoforms in thyrotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus. Endocrinology 135: 92–100

    Article  PubMed  CAS  Google Scholar 

  • Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC (2005) Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics

    Google Scholar 

  • Long L, Rubin R, Baserga R, Brodt P (1995) Loss of the metastatic phenotype in murine carcinoma cells expressing an antisense RNA to the insulin-like growth factor receptor. Cancer Res 55: 1006–1009

    PubMed  CAS  Google Scholar 

  • Marsh-Armstrong N, Huang H, Remo BF, Liu TT, Brown DD (1999) Asymmetric growth and development of the Xenopus laevis retina during metamorphosis is controlled by type III deiodinase. Neuron 24(4): 871–878

    Article  PubMed  CAS  Google Scholar 

  • Marzioni M, Glaser S, Francis H et al. (2005) Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology 128(1): 121–137

    Article  PubMed  CAS  Google Scholar 

  • Masamura S, Santner SJ, Heitjan DF, Santen RJ (1995) Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells. J Clin Endocrinol Metab 80: 2918–2925

    Article  PubMed  CAS  Google Scholar 

  • Matera L (1996) Endocrine, paracrine and autocrine actions of prolactin on immune cells. Life Sci 59: 599–614

    Article  PubMed  CAS  Google Scholar 

  • Mbikay M, Tadros H, Seidah NG, Simpson EM (1995) Linkage mapping of the gene for the LIM-homeoprotein LIM3 (locus Lhx3) to mouse chromosome 2. Mam Genome 6: 818–819

    Article  CAS  Google Scholar 

  • McCullagh DR (1932) Dual endocrine activity of the testes. Science 76: 19–20

    CAS  PubMed  Google Scholar 

  • McDuffie IA, Akhter N, Childs GV (2004) Regulation of leptin mRNA and protein expression in pituitary somatotropes. J Histochem Cytochem 52(2): 263–273

    PubMed  CAS  Google Scholar 

  • Mendel CM (1989) The free hormone hypothesis: A physiologically based mathematical model. Endocr Rev 10: 232–274

    Article  PubMed  CAS  Google Scholar 

  • Millen SK (ed) (1989) On journeys well traveled. In: Einstein. Office of Public Affairs, Albert Einstein College of Medicine, Bronx, NY, pp 3–6

    Google Scholar 

  • Montero-Pedrazuela A, Bernal J, Guadano-Ferraz A (2003) Divergent expression of type 2 deiodinase and the putative thyroxine-binding protein p29, in rat brain, suggests that they are functionally unrelated proteins. Endocrinology 144(3): 1045–1052

    Article  PubMed  CAS  Google Scholar 

  • Moore JP Jr, Wilson L, Dalkin AC, Winters SJ (2003) Differential expression of the pituitary gonadotropin subunit genes during male rat sexual maturation: Reciprocal relationship between hypothalamic pituitary adenylate cyclase-activating polypeptide and follicle-stimulating hormone beta expression. Biol Reprod 69(1): 234–241

    Article  PubMed  CAS  Google Scholar 

  • Morand I, Fonlupt P, Guerrier A et al. (1996) Cell-to-cell communication in the anterior pituitary: Evidence for gap junction-mediated exchanges between endocrine cells and folliculostellate cells. Endocrinology 137: 3356–3367

    Article  PubMed  CAS  Google Scholar 

  • Muttukrishna S, Tannetta D, Groome N, Sargent I (2004) Activin and follistatin in female reproduction. Mol Cell Endocrinol 225(1/2): 45–56

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Tableros V, Sanchez-Soto MC, Garcia S, Hiriart M (2004) Autocrine regulation of single pancreatic beta-cell survival. Diabetes 53(8): 2018–2023

    PubMed  CAS  Google Scholar 

  • Ng L, Goodyear RJ, Woods CA et al. (2004) Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad Sci USA 101(10): 3474–3479

    Article  PubMed  CAS  Google Scholar 

  • Obregon MJ, Roelfsema F, Morreale de Escobar G, Escobar del Rey F, Querido A (1979) Exchange of triiodothyronine derived from thyroxine with circulating triiodothyronine as studied in the rat. Clin Endocrinol (Oxf) 10: 305–315

    CAS  Google Scholar 

  • Obregon MJ, Mallol J, Escobar del Rey F, Morreale de Escobar G (1981) Presence of L-thyroxine and 3,5,3′-triiodo-L-thyronine in tissues from thyroidectomized rats. Endocrinology 109: 908–913

    PubMed  CAS  Google Scholar 

  • Ortiga Carvalho TM, Curty FH, Pazos Moura CC (1995) Acute effect of thyroxine on pituitary neuromedin B content of hypothyroid rats and its correlation with TSH secretion. Braz J Med Biol Res 28: 715–719

    PubMed  CAS  Google Scholar 

  • Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25(6): 947–970

    Article  PubMed  CAS  Google Scholar 

  • Pazos-Moura CC, Ortiga-Carvalho TM, Gaspar DM (2003) The autocrine/paracrine regulation of thyrotropin secretion. Thyroid 13(2): 167–175

    Article  PubMed  CAS  Google Scholar 

  • Perez FM, Rose JC, Schwartz J (1995) Anterior pituitary cells: Getting to know their neighbors. Mol Cell Endocrinol 111: C1–C6

    Article  PubMed  CAS  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J et al. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014): 226–230

    Article  PubMed  CAS  Google Scholar 

  • Prummel MF, Brokken LJ, Wiersinga WM (2004) Ultra short-loop feedback control of thyrotropin secretion. Thyroid 14(10): 825–829

    Article  PubMed  CAS  Google Scholar 

  • Quignodon L, Legrand C, Allioli N et al. (2004) Thyroid hormone signaling is highly heterogeneous during pre-and postnatal brain development. J Mol Endocrinol 33(2): 467–476

    Article  PubMed  CAS  Google Scholar 

  • Rajewsky K, Gu H, Kuhn R et al. (1996) Conditional gene targeting. J Clin Invest 98(3): 600–603

    Article  PubMed  CAS  Google Scholar 

  • Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307(5715): 1625–1630

    Article  PubMed  CAS  Google Scholar 

  • Rindi G, Torsello A, Locatelli V, Solcia E (2004) Ghrelin expression and actions: A novel peptide for an old cell type of the diffuse endocrine system. Experim Biol Med 229(10): 1007–1016

    CAS  Google Scholar 

  • Robson H, Siebler T, Shalet SM, Williams GR (2002) Interactions between GH, IGF-I, glucocorticoids, and thyroid hormones during skeletal growth. Pediatr Res 52(2): 137–147

    Article  PubMed  CAS  Google Scholar 

  • Santen RJ, Song RX, Zhang Z et al. (2003) Adaptive hypersensitivity to estrogen: Mechanism for superiority of aromatase inhibitors over selective estrogen receptor modulators for breast cancer treatment and prevention. Endocr Relat Cancer 10(2): 111–130

    Article  PubMed  CAS  Google Scholar 

  • Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain DL, Galton VA (2001) Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol 15(12): 2137–2148

    Article  PubMed  CAS  Google Scholar 

  • Schomburg L, Bauer K (1995) Thyroid hormone rapidly and stringently regulate the messenger RNA levels of the thyrotropin-releasing hormone (TRH) receptor and the TRH-degrading ectoenzyme. Endocrinology 136: 3480–3485

    Article  PubMed  CAS  Google Scholar 

  • Silva JE, Kaplan MM, Cheron RG, Dick TE, Larsen PR (1978) Thyroxine to 3,5,3′-triiodothyronine conversion by rat anterior pituitary and liver. Metabolism 27: 1601–1607

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Wortsman J, Kohn L et al. (2002) Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin. J Invest Dermatol 119(6): 1449–1455

    Article  PubMed  CAS  Google Scholar 

  • Soji T, Mabuchi Y, Kurono C, Herbert DC (1997) Folliculo-stellate cells and intercellular communication within the rat anterior pituitary gland. Microsc Res Tech 39(2): 138–149

    Article  PubMed  CAS  Google Scholar 

  • Spinazzi R, Andreis PG, Nussdorfer GG (2005) Neuropeptide-Y and Y-receptors in the autocrine-paracrine regulation of adrenal gland under physiological and pathophysiological conditions (Review). Int J Mol Med 15(1): 3–13

    PubMed  CAS  Google Scholar 

  • Starling EH (1905) On the chemical correlation of the functions of the body. Lancet 166: 339–341

    Article  Google Scholar 

  • Stojilkovic SS (2001) A novel view of the function of pituitary folliculostellate cell network. Trends Endocrinol Metab 12(9): 378–380

    Article  PubMed  CAS  Google Scholar 

  • Stulnig TM, Waldhausl W (2004) 11beta-Hydroxysteroid dehydrogenase Type 1 in obesity and Type 2 diabetes. Diabetologia 47(1): 1–11

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Naruse S, Kitagawa M et al. (2001) 5-Hydroxy-tryptamine strongly inhibits fluid secretion in guinea pig pancreatic duct cells. J Clin Invest 108(5): 749–756

    Article  PubMed  CAS  Google Scholar 

  • Tannahill LA, Visser TJ, McCabe CJ et al. (2002) Dysregulation of iodothyronine deiodinase enzyme expression and function in human pituitary tumours. Clin Endocrinol (Oxf) 56(6): 735–743

    Article  CAS  Google Scholar 

  • Tomlinson JW, Stewart PM (2002) The functional consequences of 11beta-hydroxysteroid dehydrogenase expression in adipose tissue. Horm Metab Res 34(11/12): 746–751

    Article  PubMed  CAS  Google Scholar 

  • Tu HM, Kim S-W, Salvatore D et al. (1997) Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138: 3359–3368

    Article  PubMed  CAS  Google Scholar 

  • Uccella S, La Rosa S, Genasetti A, Capella C (2000) Localization of inhibin/activin subunits in normal pituitary and in pituitary adenomas. Pituitary 3(3): 131–139

    Article  PubMed  CAS  Google Scholar 

  • Veiga MALC da, Jesus Oliveira K, Curty FH, Moura CCP de (2004) Thyroid hormones modulate the endocrine and autocrine/paracrine actions of leptin on thyrotropin secretion. J Endocrinol 183(1): 243–247

    Article  PubMed  CAS  Google Scholar 

  • Volpato CB, Nunes MT (2001) Functional evidence for the presence of type ii 5′-deiodinase in somatotropes and its adaptive role in hypothyroidism. Neuroendocrinology 74(4): 220–226

    Article  PubMed  CAS  Google Scholar 

  • Wasco EC, Martinez E, Grant KS, St Germain EA, St Germain DL, Galton VA (2003) Determinants of iodothyronine deiodinase activities in rodent uterus. Endocrinology 144(10): 4253–4261

    Article  PubMed  CAS  Google Scholar 

  • Waters MJ, Conway-Campbell BL (2004) The oncogenic potential of autocrine human growth hormone in breast cancer. Proc Natl Acad Sci USA 101(42): 14992–14993

    Article  PubMed  CAS  Google Scholar 

  • Winters SJ, Moore JP (2004) Intra-pituitary regulation of gonadotrophs in male rodents and primates. Reproduction 128(1): 13–23

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Köhrle, J. (2006). Grundlagen der parakrinen, autokrinen und intrakrinen Regulation endokriner Organe. In: Ganten, D., Ruckpaul, K., Köhrle, J. (eds) Molekularmedizinische Grundlagen von para- und autokrinen Regulationsstörungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28782-5_1

Download citation

Publish with us

Policies and ethics