Skip to main content

Predicting the Lifetime of Steel

  • Chapter
Extreme Events in Nature and Society

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 1852 Accesses

Summary

Even today, lifetime predictions of construction parts are still based on the Wöhler method, which is almost 150 years old. To construct a reliable Wöhler diagram, it is necessary to perform alternating load fatigue experiments on a huge number of equivalent samples for up to 108 or 109 load cycles. The lifetime under a specific applied load is then deduced from this diagram using statistical techniques.

Physically, the reason for fatigue and finally fracture is the accumulation of lattice defects like dislocations, vacancies and vacancy clusters, which are produced even when the load is significantly below the material’s yield strength. The progress of fatigue can be observed from its earliest stages — after only a few load cycles — up to the final state of fracture by employing positrons as extremely sensitive lattice defect probes. In situ experiments can be performed to study test samples or real construction parts under realistic conditions. In steels a critical defect density is reached just before fatigue failure occurs. The point of failure can therefore be extrapolated from the early stages of fatigue by monitoring the defect density.

Spatially resolved experiments performed on a simple carbon steel and employing the Bonn Positron Microprobe indicate significant variations in defect densities over the region under stress even after just a few load cycles. These inhomogenieties grow from a typical starting size of less than a millimeter to encompass the entire volume after further fatigue. With more experimental experience and a better theoretical understanding of this process, this new prediction method should lead to much simpler and more reliable predictions of the lifetimes of metallic materials in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Wöhler, Z. f. Bauwesen 8, 642 (1858)

    Google Scholar 

  2. I. Dekthyar, D. Levina, V. Mikhalenkov, Soviet Phys. Dokl. 9, 492 (1964)

    ADS  Google Scholar 

  3. I. MacKenzie, T. Khoo, A. McDonald, B. McKee, Phys. Rev. Lett. 19, 946 (1967)

    Article  ADS  Google Scholar 

  4. B. Bergensen, M.J. Stott, Solid State Commun. 7, 1203 (1969)

    Article  ADS  Google Scholar 

  5. W. Frank, A. Seeger, Appl. Phys. 3, 61 (1974)

    Article  ADS  Google Scholar 

  6. V.I. Goldanski, Positron Annihilation, Atomic Energy Review 6, 183 (1968)

    Google Scholar 

  7. R. West, Adv. Phys. 22, 263 (1973)

    Article  ADS  Google Scholar 

  8. A. Seeger, J. Phys. F 3, 248 (1973)

    Article  ADS  Google Scholar 

  9. P. Hautojärvi, Positrons in Solids, Topics in Current Physics, Vol. 12, Springer, Berlin Heidelberg New York (1979)

    Google Scholar 

  10. U. Holzwarth, P. Schaaff, Phys. Rev. B 69, 094110 (2004)

    Article  ADS  Google Scholar 

  11. K. Bennewitz, M. Haaks, T. Staab, S. Eisenberg, T. Lampe, K. Maier, Z. Metallkd. 93, 778 (2002)

    Google Scholar 

  12. Ch. Zamponi, St. Sonneberger, M. Haaks, I. Müller, T. Staab, G. Tempus, K. Maier, J. Mat. Sci. 39, 6951 (2004)

    Article  ADS  Google Scholar 

  13. R. Ritchi, Phys. Rev. 114, 644 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Perkins, J. Carbotte, Phys. Rev. B 1, 101 (1970)

    Article  ADS  Google Scholar 

  15. R. Nieminen, J. Oliva, Phys. Rev. B 22, 2226 (1980)

    Article  ADS  Google Scholar 

  16. A. Makhov, Sov. Phys. Sol. Stat. 2, 1934 (1961)

    Google Scholar 

  17. V. Ghosh, Appl. Surf. Sci. 85, 187 (1995)

    Article  ADS  Google Scholar 

  18. A. Vehanen, K. Saarinen, P. Hautojärvi, H. Huomo, Phys. Rev. B 35, 4606 (1987)

    Article  ADS  Google Scholar 

  19. W. Brandt, R. Paulin, Phys. Rev. B 5, 2430 (1972)

    Article  ADS  Google Scholar 

  20. M. Puska, R. Nieminen, Rev. Mod. Phys. 66, 841 (1994)

    Article  ADS  Google Scholar 

  21. D.C. Connors, R.N. West, Phys. Lett. 30A, 24 (1969)

    ADS  Google Scholar 

  22. A. Seeger, Appl. Phys. 4, 183 (1974)

    Article  ADS  Google Scholar 

  23. T. Wider, K. Maier, U. Holzwarth, Phys. Rev. B 60, 179 (1999)

    Article  ADS  Google Scholar 

  24. C. Hidalgo, S. Linderoth, J. Phys. Metal Phys. 18, L263 (1988)

    Article  ADS  Google Scholar 

  25. L.C. Smedskjaer, M. Manninen, M.J. Fluss, J. Phys. F 10, 2237 (1980)

    Article  ADS  Google Scholar 

  26. K. Petersen, I.A. Repin, G. Trumpy, Cond. Mat. 8, 2815 (1996)

    Article  Google Scholar 

  27. B. Pagh, H.E. Hansen, B. Nielsen, G. Trumpy, K. Petersen, Appl. Phys. A 33, 255 (1984)

    Article  ADS  Google Scholar 

  28. E. Hashimoto, J. Phys. Soc. Japan 60, 552 (1993)

    ADS  Google Scholar 

  29. T. Wider, S. Hansen, U. Holzwarth, K. Maier, Phys. Rev. B 57, 5126 (1989)

    Article  ADS  Google Scholar 

  30. S. DeBenedetti, C. Cowan, W. Konneker, Phys. Rev. 76, 440 (1949)

    Article  ADS  Google Scholar 

  31. G. Saada, Acta Metal. 9, 965 (1961)

    Article  Google Scholar 

  32. P. Hirsch, D. Warrington, Philos. Mag. 6, 735 (1961)

    Article  ADS  Google Scholar 

  33. K.G. Lynn, J.R. McDonald, R.A. Boie, L.C. Feldman, J.D. Gabbe, M.F. Robbins, E. Bonderup, J. Golovchenko, Phys. Rev. Lett. 38, 241 (1977)

    Article  ADS  Google Scholar 

  34. M. Haaks, T.E.M. Staab, K. Saarinen, K. Maier, Phys. Stat. Sol. A 202, R38 (2005)

    Article  ADS  Google Scholar 

  35. H. Greif, M. Haaks, U. Holzwarth, U. Männig, M. Tongbhoyai, T. Wider, K. Maier, J. Bihr, B. Huber, Appl. Phys. Lett. 71, 2115 (1997)

    Article  ADS  Google Scholar 

  36. L. Madansky, F. Rasetti, Phys. Rev. 79, 397 (1950)

    Article  ADS  Google Scholar 

  37. E.W. Hart, Acta. Met. 1, 146 (1955)

    Article  Google Scholar 

  38. A.H. Cottrell, Dislocations and Plastic Flow in Crystals, Clarendon, Oxford (1953)

    MATH  Google Scholar 

  39. J.P. Hirth, J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1968)

    Google Scholar 

  40. T.E.M. Staab, R. Krause-Rehberg, B. Kieback, J. Mat. Sci. 34, 3833 (1999)

    Article  Google Scholar 

  41. DIN Norm 50150, Umwertung von Härtewerten, Beuth Verlag, Berlin (2000)

    Google Scholar 

  42. M. Haaks, J. Plöger, Abbildung der Schädigung in der Randzone mit Positronen als Sondenteilchen, in: H.K. Tönshoff, C. Hollmann (eds.), Hochgeschwindigkeitsspanen metallischer Werkstoffe, Wiley-VCH, Weinheim (2004)

    Google Scholar 

  43. A. Seeger, Handb. d. Physik VII, Vol. 2, Springer, Berlin Heidelberg New York (1958)

    Google Scholar 

  44. J. Bauschinger, Mittheilungen aus dem Mechanisch-Technischen Laboratorium der königlichen Technischen Hochschule in München 13, 1 (1886)

    Google Scholar 

  45. A. Abel, H. Muir, Philos. Mag. 26, 489 (1972)

    Article  ADS  Google Scholar 

  46. D. Broek, Elementary Engineering Fracture Mechanics, Sijthoff & Noordhoff, Alphen a/d Rijn (1978)

    MATH  Google Scholar 

  47. M. Haaks, K. Bennewitz, H. Bihr, U. Männig, Ch. Zamponi, K. Maier, Appl. Surf. Sci. 149, 207 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Center for Frontier Sciences

About this chapter

Cite this chapter

Haaks, M., Maier, K. (2006). Predicting the Lifetime of Steel. In: Albeverio, S., Jentsch, V., Kantz, H. (eds) Extreme Events in Nature and Society. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28611-X_10

Download citation

Publish with us

Policies and ethics