Skip to main content

Foundations of Complexity Theory

  • Chapter
Complexity Theory and Cryptology

Part of the book series: Texts in Theoretical Computer Science An EATCS Series ((TTCS))

  • 1424 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.8 Summary and Bibliographic Remarks

  1. [ACG+03]_G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, M. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation. Springer-Verlag, second edition, 2003.

    Google Scholar 

  2. [AHH+93]_V. Arvind, Y. Han, L. Hemachandra, J. Köbler, A. Lozano, M. Mundhenk, M. Ogiwara, U. Schöning, R. Silvestri, and T. Thierauf. Reductions to sets of low information content. In K. Ambos-Spies, S. Homer, and U. Schöning, editors, Complexity Theory, pages 1–45. Cambridge University Press, 1993.

    Google Scholar 

  3. E. Allender. Invertible functions, 1985. PhD thesis, Georgia Institute of Technology.

    Google Scholar 

  4. E. Allender. The complexity of sparse sets in P. In Proceedings of the 1st Structure in Complexity Theory Conference, pages 1–11. Springer-Verlag Lecture Notes in Computer Science #223, June 1986.

    Google Scholar 

  5. E. Allender. Isomorphisms and 1-L reductions. Journal of Computer and System Sciences, 36(6):336–350, 1988.

    Article  Google Scholar 

  6. E. Allender. Limitations of the upward separation technique. Mathematical Systems Theory, 24(1):53–67, 1991.

    Article  Google Scholar 

  7. E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Computing, 17(6):1193–1202, 1988.

    Article  Google Scholar 

  8. J. Balcázar. Self-reducibility. Journal of Computer and System Sciences, 41(3):367–388, 1990.

    Article  Google Scholar 

  9. J. Balcázar, R. Book, and U. Schöning. The polynomial-time hierarchy and sparse oracles. Journal of the ACM, 33(3):603–617, 1986.

    Article  Google Scholar 

  10. D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice Hall, 1993.

    Google Scholar 

  11. A. Borodin and A. Demers. Some comments on functional self-reducibility and the NP hierarchy. Technical Report TR 76-284, Cornell Department of Computer Science, Ithaca, NY, July 1976.

    Google Scholar 

  12. J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity II. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1990.

    Google Scholar 

  13. J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, second edition, 1995.

    Google Scholar 

  14. L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell University, Ithaca, NY, 1977.

    Google Scholar 

  15. P. Berman. Relationship between density and deterministic complexity of NP-complete languages. In Proceedings of the 5th International Colloquium on Automata, Languages, and Programming, pages 63–71. Springer-Verlag Lecture Notes in Computer Science #62, 1978.

    Google Scholar 

  16. L. Berman and J. Hartmanis. On isomorphisms and density of NP and other complete sets. SIAM Journal on Computing, 6(2):305–322, 1977.

    Article  Google Scholar 

  17. H. Buhrman, E. Hemaspaandra, and L. Longpré. SPARSE reduces conjunctively to TALLY. SIAM Journal on Computing, 24(3):673–681, June 1995.

    Article  Google Scholar 

  18. A. Brandstädt, V. Le, and J. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.

    Google Scholar 

  19. M. Blum. A machine-independent theory of the complexity of recursive functions. Journal of the ACM, 14(2):322–336, April 1967.

    Article  Google Scholar 

  20. M. Bonuccelli. Dominating sets and dominating number of circular arc graphs. Discrete Applied Mathematics, 12:203–213, 1985.

    Article  Google Scholar 

  21. R. Book. Tally languages and complexity classes. Information and Control, 26(2):186–193, 1974.

    Article  Google Scholar 

  22. H. Buhrman and L. Torenvliet. P-selective self-reducible sets: A new characterization of P. Journal of Computer and System Sciences, 53(2):210–217, 1996.

    Article  Google Scholar 

  23. H. Buhrman, P. van Helden, and L. Torenvliet. P-selective self-reducible sets: A new characterization of P. In Proceedings of the 8th Structure in Complexity Theory Conference, pages 44–51. IEEE Computer Society Press, May 1993.

    Google Scholar 

  24. A. Cobham. The intrinsic computational difficulty of functions. In Proceedings of the 1964 International Congress for Logic Methodology and Philosophy of Science, pages 24–30. North Holland, 1964.

    Google Scholar 

  25. S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM Symposium on Theory of Computing, pages 151–158. ACM Press, 1971.

    Google Scholar 

  26. S. Cook. An observation on time-storage trade off. Journal of Computer and System Sciences, 9:308–316, 1974.

    Google Scholar 

  27. J. Cai, A. Pavan, and D. Sivakumar. On the hardness of permanent. In Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, pages 90–99. Springer-Verlag Lecture Notes in Computer Science #1563, 1999.

    Google Scholar 

  28. J. Cai and D. Sivakumar. Resolution of Hartmanis’ conjecture for NL-hard sparse sets. Theoretical Computer Science, 240(2):257–269, 2000.

    Article  Google Scholar 

  29. J. Cai and D. Sivakumar. Sparse hard sets for P: Resolution of a conjecture of Hartmanis. Journal of Computer and System Sciences, 58(2):280–296, April 1999.

    Article  Google Scholar 

  30. D. Du and K. Ko. Theory of Computational Complexity. John Wiley and Sons, 2000.

    Google Scholar 

  31. J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.

    Google Scholar 

  32. M. Farber. Domination, independent domination, and duality in strongly chordal graphs. Discrete Applied Mathematics, 7:115–130, 1984.

    Article  Google Scholar 

  33. S. Fenner, L. Fortnow, and S. Kurtz. An oracle relative to which the isomorphism conjecture holds. In Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science, pages 30–39. IEEE Computer Society Press, October 1992.

    Google Scholar 

  34. S. Fenner, L. Fortnow, A. Naik, and J. Rogers. Inverting onto functions. In Proceedings of the 11th Annual IEEE Conference on Computational Complexity, pages 213–222. IEEE Computer Society Press, May 1996.

    Google Scholar 

  35. U. Feige, M. Halldórsson, G. Kortsarz, and A. Srinivasan. Approximating the domatic number. SIAM Journal on Computing, 32(1):172–195, 2002.

    Article  Google Scholar 

  36. S. Fortune. A note on sparse complete sets. SIAM Journal on Computing, 8(3):431–433, 1979.

    Article  Google Scholar 

  37. L. Fortnow. Counting complexity. In L. Hemaspaandra and A. Selman, editors, Complexity Theory Retrospective II, pages 81–107. Springer-Verlag, 1997.

    Google Scholar 

  38. K. Ganesan and S. Homer. Complete problems and strong polynomial reducibilities. SIAM Journal on Computing, 21(4):733–742, August 1992.

    Article  Google Scholar 

  39. J. Goldsmith and S. Homer. Scalability and the isomorphism problem. Information Processing Letters, 57(3):137–143, 1996.

    Article  Google Scholar 

  40. A. Gál, S. Halevi, R. Lipton, and E. Petrank. Computing from partial solutions. In Proceedings of the 14th Annual IEEE Conference on Computational Complexity, pages 34–45. IEEE Computer Society Press, May 1999.

    Google Scholar 

  41. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

    Google Scholar 

  42. J. Goldsmith and D. Joseph. Three results on the polynomial isomorphism of complete sets. In Proceedings of the 27th IEEE Symposium on Foundations of Computer Science, pages 390–397, 1986.

    Google Scholar 

  43. M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoretical Computer Science, 1:237–267, 1976.

    Article  Google Scholar 

  44. J. Goldsmith, D. Joseph, and P. Young. Self-reducible, P-selective, near-testable, and P-cheatable sets: The effect of internal structure on the complexity of a set. In Proceedings of the 2nd Structure in Complexity Theory Conference, pages 50–59, 1987.

    Google Scholar 

  45. M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

    Google Scholar 

  46. J. Goldsmith, M. Ogihara, and J. Rothe. Tally NP sets and easy census functions. Information and Computation, 158(1):29–52, April 2000.

    Article  Google Scholar 

  47. J. Goldsmith, M. Ogihara, and J. Rothe. Tally NP sets and easy census functions. In Proceedings of the 23rd International Symposium on Mathematical Foundations of Computer Science, pages 483–492. Springer-Verlag Lecture Notes in Computer Science #1450, August 1998.

    Google Scholar 

  48. A. Große, J. Rothe, and G. Wechsung. Computing complete graph isomorphisms and hamiltonian cycles from partial ones. Theory of Computing Systems, 35(1):81–93, February 2002.

    Google Scholar 

  49. J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. SIAM Journal on Computing, 17(2):309–335, 1988.

    Article  Google Scholar 

  50. J. Hartmanis. On log-tape isomorphisms of complete sets. Theoretical Computer Science, 7(3):273–286, 1978.

    Article  Google Scholar 

  51. J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible computations. In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science, pages 439–445. IEEE Computer Society Press, 1983.

    Google Scholar 

  52. J. Hartmanis. On sparse sets in NP-P. Information Processing Letters, 16(2):55–60, 1983.

    Article  Google Scholar 

  53. J. Hartmanis. Gödel, von Neumann, and the P =? NP problem. Bulletin of the EATCS, 38:101–107, 1989.

    Google Scholar 

  54. L. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer and System Sciences, 39(3):299–322, 1989.

    Article  Google Scholar 

  55. J. Hartmanis and L. Hemachandra. Complexity classes without machines: On complete languages for UP. Theoretical Computer Science, 58(1–3):129–142, 1988.

    Article  Google Scholar 

  56. J. Hartmanis and L. Hemachandra. One-way functions and the nonisomorphism of NP-complete sets. Theoretical Computer Science, 81(1):155–163, 1991.

    Article  Google Scholar 

  57. J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP-P: EXPTIME versus NEXPTIME. Information and Control, 65(2/3):159–181, 1985.

    Article  Google Scholar 

  58. L. Hemaspaandra and S. Jha. Defying upward and downward separation. Information and Computation, 121:1–13, 1995.

    Article  Google Scholar 

  59. J. Hartmanis, P. Lewis, and R. Stearns. Classification of computations by time and memory requirements. In Proc. IFIP Congress 65, pages 31–35,Washington, D.C., 1965. International Federation for Information Processing, Spartan Books.

    Google Scholar 

  60. J. Hartmanis and S. Mahaney. An essay about research on sparse NP complete sets. In Proceedings of the 9th Symposium on Mathematical Foundations of Computer Science, pages 40–57. Springer-Verlag Lecture Notes in Computer Science #88, September 1980.

    Google Scholar 

  61. E. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. P-selective sets and reducing search to decision vs. self-reducibility. Journal of Computer and System Sciences, 53(2):194–209, 1996.

    Article  Google Scholar 

  62. L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion. EATCS Texts in Theoretical Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 2002.

    Google Scholar 

  63. L. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are sparse sets? In Proceedings of the 7th Structure in Complexity Theory Conference, pages 222–238. IEEE Computer Society Press, June 1992.

    Google Scholar 

  64. L. Hemaspaandra and J. Rothe. Characterizing the existence of one-way permutations. Theoretical Computer Science, 244(1–2):257–261, August 2000.

    Article  Google Scholar 

  65. L. Hemaspaandra and J. Rothe. Unambiguous computation: Boolean hierarchies and sparse Turing-complete sets. SIAM Journal on Computing, 26(3):634–653, June 1997.

    Article  Google Scholar 

  66. L. Hemaspaandra, J. Rothe, and G. Wechsung. Easy sets and hard certificate schemes. Acta Informatica, 34(11):859–879, November 1997.

    Article  Google Scholar 

  67. L. Hemaspaandra, J. Rothe, and G. Wechsung. On sets with easy certificates and the existence of one-way permutations. In Proceedings of the Third Italian Conference on Algorithms and Complexity, pages 264–275. Springer-Verlag Lecture Notes in Computer Science #1203, March 1997.

    Google Scholar 

  68. S. Homer and A. Selman. Computability and Complexity Theory. Texts in Computer Science. Springer-Verlag, 2001.

    Google Scholar 

  69. J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Transactions of the American Mathematical Society, 117:285–306, 1965.

    Google Scholar 

  70. F. Hennie and R. Stearns. Two-tape simulation of multitape Turing machines. Journal of the ACM, 13:533–546, 1966.

    Article  Google Scholar 

  71. S. Homer and A. Selman. Oracles for structural properties: the isomorphism problem and public-key cryptography. In Proceedings of the 4th Structure in Complexity Theory Conference, pages 3–14. IEEE Computer Society Press, June 1989.

    Google Scholar 

  72. C. Homan and M. Thakur. One-way permutations and self-witnessing languages. In R. Baeza-Yates, U. Montanari, and N. Santoro, editors, Foundations of Information Technology in the Era of Network and Mobile Computing, pages 243–254. Kluwer Academic Publishers, August 2002. Proceedings of the Second IFIP International Conference on Theoretical Computer Science, Stream 1 of the 17th IFIP World Computer Congress.

    Google Scholar 

  73. C. Homan and M. Thakur. One-way permutations and self-witnessing languages. Journal of Computer and System Sciences, 67(3):608–622, 2003.

    Article  Google Scholar 

  74. J. Hartmanis and Y. Yesha. Computation times of NP sets of different densities. Theoretical Computer Science, 34(1–2):17–32, 1984.

    Article  Google Scholar 

  75. N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on Computing, 17:935–938, 1988.

    Article  Google Scholar 

  76. N. Jones and W. Laaser. Problems complete for deterministic polynomial time. Theoretical Computer Science, 3(1):105–117, October 1976.

    Article  Google Scholar 

  77. N. Jones, Y. Lien, and W. Laaser. New problems complete for nondeterministic log space. Mathematical Systems Theory, 10(1):1–17, 1976.

    Article  Google Scholar 

  78. D. Johnson. The NP-completeness column: An ongoing guide. Journal of Algorithms, 2(4):393–405, December 1981. First column in a series of columns on NP-completeness appearing in the same journal.

    Article  Google Scholar 

  79. N. Jones. Space-bounded reducibility among combinatorial problems. Journal of Computer and System Sciences, 11:68–75, 1975.

    Google Scholar 

  80. D. Joseph and P. Young. Self-reducibility: Effects of internal structure on computational complexity. In A. Selman, editor, Complexity Theory Retrospective, pages 82–107. Springer-Verlag, 1990.

    Google Scholar 

  81. J. Köbler. Strukturelle Komplexität von Anzahlproblemen. PhD thesis, University of Stuttgart, Stuttgart, Germany, 1989. In German.

    Google Scholar 

  82. R. Karp. Reducibilities among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity of Computer Computations, pages 85–103, 1972.

    Google Scholar 

  83. R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proceedings of the 12th ACM Symposium on Theory of Computing, pages 302–309. ACM Press, April 1980. An extended version has also appeared as: Turing machines that take advice, L'Enseignement Mathématique, 2nd series 28, 1982, pages 191–209.

    Google Scholar 

  84. K. Ko, T. Long, and D. Du. On one-way functions and polynomial-time isomorphisms. Theoretical Computer Science, 47:263–276, 1986.

    Article  Google Scholar 

  85. S. Kurtz, S. Mahaney, and J. Royer. Progress on collapsing degrees. In Proceedings of the 2nd Structure in Complexity Theory Conference, pages 126–131. IEEE Computer Society Press, June 1987.

    Google Scholar 

  86. S. Kurtz, S. Mahaney, and J. Royer. Collapsing degrees. Journal of Computer and System Sciences, 37:247–268, 1988.

    Article  Google Scholar 

  87. S. Kurtz, S. Mahaney, and J. Royer. The isomorphism conjecture fails relative to a random oracle. In Proceedings of the 21st ACM Symposium on Theory of Computing, pages 157–166. ACM Press, May 1989.

    Google Scholar 

  88. S. Kurtz, S. Mahaney, and J. Royer. The structure of complete degrees. In A. Selman, editor, Complexity Theory Retrospective, pages 108–146. Springer-Verlag, 1990.

    Google Scholar 

  89. K. Ko. On some natural complete operators. Theoretical Computer Science, 37(1):1–30, 1985.

    Article  Google Scholar 

  90. K. Ko and U. Schöning. On circuit-size complexity and the low hierarchy in NP. SIAM Journal on Computing, 14(1):41–51, 1985.

    Article  Google Scholar 

  91. H. Kaplan and R. Shamir. The domatic number problem on some perfect graph families. Information Processing Letters, 49(1):51–56, January 1994.

    Article  Google Scholar 

  92. J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: Its Structural Complexity. Birkhäuser, 1993.

    Google Scholar 

  93. R. Ladner. On the structure of polynomial time reducibility. Journal of the ACM, 22(1):155–171, 1975.

    Article  Google Scholar 

  94. L. Levin. Universal sorting problems. Problemy Peredaci Informacii, 9:115–116, 1973. In Russian. English translation in Problems of Information Transmission, 9:265–266, 1973.

    Google Scholar 

  95. R. Ladner and N. Lynch. Relativization of questions about log space computability. Mathematical Systems Theory, 10(1):19–32, 1976.

    Article  Google Scholar 

  96. T. Long. On restricting the size of oracles compared with restricting access to oracles. SIAM Journal on Computing, 14(3):585–597, 1985. Erratum appears in the same journal, 17(3):628, 1988.

    Article  Google Scholar 

  97. M. Liśkiewicz, M. Ogiwara, and S. Toda. The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes. Theoretical Computer Science, 304(1–3):129–156, July 2003.

    Article  Google Scholar 

  98. T. Long and A. Selman. Relativizing complexity classes with sparse oracles. Journal of the ACM, 33(3):618–627, 1986.

    Article  Google Scholar 

  99. P. Lewis, R. Stearns, and J. Hartmanis. Memory bounds for recognition of context-free and context-sensitive languages. In Proceedings of the 6th IEEE Symposium on Switching Circuit Theory and Logical Design, pages 191–202, 1965.

    Google Scholar 

  100. S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis. Journal of Computer and System Sciences, 25(2):130–143, 1982.

    Article  Google Scholar 

  101. S. Mahaney. Sparse sets and reducibilities. In R. Book, editor, Studies in Complexity Theory, pages 63–118. John Wiley and Sons, 1986.

    Google Scholar 

  102. S. Mahaney. The isomorphism conjecture and sparse sets. In J. Hartmanis, editor, Computational Complexity Theory, pages 18–46. American Mathematical Society, 1989. Proceedings of Symposia in Applied Mathematics #38.

    Google Scholar 

  103. A. Meyer and M. Paterson. With what frequency are apparently intractable problems difficult? Technical Report MIT/LCS/TM-126, MIT Laboratory for Computer Science, Cambridge, MA, 1979.

    Google Scholar 

  104. S. Mahaney and P. Young. Reductions among polynomial isomorphism types. Theoretical Computer Science, 39:207–224, 1985.

    Article  Google Scholar 

  105. M. Ogihara. Sparse hard sets for P yield space-efficient algorithms. In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, pages 354–361. IEEE Computer Society Press, 1995.

    Google Scholar 

  106. M. Ogihara and S. Toda. The complexity of computing the number of self-avoiding walks in two-dimensional grid graphs and in hypercube graphs. In Proceedings of the 26th International Symposium on Mathematical Foundations of Computer Science, pages 585–597. Springer-Verlag Lecture Notes in Computer Science #2136, 2001.

    Google Scholar 

  107. M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471–483, June 1991.

    Article  Google Scholar 

  108. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  109. C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, 1982.

    Google Scholar 

  110. C. Rackoff. Relativized questions involving probabilistic algorithms. Journal of the ACM, 29(1):261–268, 1982.

    Article  Google Scholar 

  111. R. Reischuk. Einführung in die Komplexitäatstheorie. Teubner, Stuttgart, 1990. In German.

    Google Scholar 

  112. J. Rothe and L. Hemaspaandra. On characterizing the existence of partial one-way permutations. Information Processing Letters, 82(3):165–171, May 2002.

    Article  Google Scholar 

  113. J. Rogers. The Isomorphism Conjecture holds and one-way functions exist relative to an oracle. Journal of Computer and System Sciences, 54(3):412–423, June 1997.

    Article  Google Scholar 

  114. J. Rothe. Bonyolultságelmélet (Complexity Theory). In A. Iványi, editor, Informatikai Algoritmusok I (Algorithms of Computer Science I), pages 125–160. ELTE Eötvöos Kiadó, 2004. In Hungarian. German version available on-line at http://www.cs.uni-duesseldorf.de/~rothe/TONY/main.pdf.

    Google Scholar 

  115. R. Rao, J. Rothe, and O. Watanabe. Upward separation for FewP and related classes. Information Processing Letters, 52(4):175–180, April 1994. Corrigendum appears in the same journal, 74(1–2):89, 2000.

    Article  Google Scholar 

  116. W. Savitch. Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

    Google Scholar 

  117. W. Savitch. Maze recognizing automata and nondeterministic tape complexity. Journal of Computer and System Sciences, 7(4):389–403, August 1973.

    Google Scholar 

  118. C. Schnorr. Optimal algorithms for self-reducible problems. In S. Michaelson and R. Milner, editors, Proceedings of the 3rd International Colloquium on Automata, Languages, and Programming, pages 322–337, University of Edinburgh, July 1976. Edinburgh University Press.

    Google Scholar 

  119. C. Schnorr. On self-transformable combinatorial problems, 1979. Presented at IEEE Symposium on Information Theory, Udine, and Symposium über Mathematische Optimierung, Oberwolfach.

    Google Scholar 

  120. A. Selman. P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP. Mathematical Systems Theory, 13:55–65, 1979.

    Article  Google Scholar 

  121. A. Selman. Analogues of semirecursive sets and effective reducibilities to the study of NP complexity. Information and Control, 52:36–51, 1982.

    Article  Google Scholar 

  122. A. Selman. Reductions on NP and P-selective sets. Theoretical Computer Science, 19:287–304, 1982.

    Article  Google Scholar 

  123. A. Selman. Natural self-reducible sets. SIAM Journal on Computing, 17(5):989–996, 1988.

    Article  Google Scholar 

  124. A. Selman. A taxonomy of complexity classes of functions. Journal of Computer and System Sciences, 48(2):357–381, 1994.

    Article  Google Scholar 

  125. R. Stearns, J. Hartmanis, and P. Lewis. Hierarchies of memory limited computations. In Proceedings of the 6th IEEE Symposium on Switching Circuit Theory and Logical Design, pages 179–190, 1965.

    Google Scholar 

  126. M. Sipser. The history and status of the P versus NP question. In Proceedings of the 24th ACM Symposium on Theory of Computing, pages 603–618. ACM Press, 1992.

    Google Scholar 

  127. R. Stearns. Juris Hartmanis: The beginnings of computational complexity. In A. Selman, editor, Complexity Theory Retrospective, pages 1–18. Springer-Verlag, 1990.

    Google Scholar 

  128. L. Stockmeyer. Planar 3-colorability is NP-complete. SIGACT News, 5(3):19–25, 1973.

    Article  Google Scholar 

  129. R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Informatica, 26:279–284, 1988.

    Article  Google Scholar 

  130. L. Valiant. The relative complexity of checking and evaluating. Information Processing Letters, 5(1):20–23, 1976.

    Article  Google Scholar 

  131. L. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189–201, 1979.

    Article  Google Scholar 

  132. L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410–421, 1979.

    Article  Google Scholar 

  133. V. Vazirani. Approximation Algorithms. Springer-Verlag, second edition, 2003.

    Google Scholar 

  134. H. Vollmer. Introduction to Circuit Theory. EATCS Texts in Theoretical Computer Science. Springer-Verlag, 1999.

    Google Scholar 

  135. O. Watanabe. On the P-isomorphism conjecture. Theoretical Computer Science, 83(2):337–343, June 1991.

    Article  Google Scholar 

  136. G. Wechsung. Vorlesungen zur Komplexitätstheorie, volume 32 of Teubner-Texte zur Informatik. Teubner, Stuttgart, 2000. In German.

    Google Scholar 

  137. I. Wegener. Komplexitätstheorie. Grenzen der Effizienz von Algorithmen. Springer-Verlag, Berlin, Heidelberg, New York, 2003. In German.

    Google Scholar 

  138. I. Wegener. The Complexity of Boolean Functions. Wiley Teubner Series in Computer Science. John Wiley and Sons, New York, 1987.

    Google Scholar 

  139. D. Welsh. Complexity: Knots, Colourings and Counting. Cambridge University Press, 1993.

    Google Scholar 

  140. K. Wagner and G. Wechsung. Computational Complexity. D. Reidel Publishing Company, 1986. Distributors for the U.S.A. and Canada: Kluwer Academic Publishers.

    Google Scholar 

  141. P. Young. Juris Hartmanis: Fundamental contributions to isomorphism problems. In A. Selman, editor, Complexity Theory Retrospective, pages 28–58. Springer-Verlag, 1990.

    Google Scholar 

  142. P. Young. How reductions to sparse sets collapse the polynomial-time hierarchy: A primer. SIGACT News, 1992. Part I (#3, pages 107–117), Part II (#4, pages 83–94), and Corrigendum to Part I (#4, page 94).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Foundations of Complexity Theory. In: Complexity Theory and Cryptology. Texts in Theoretical Computer Science An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28520-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-28520-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22147-0

  • Online ISBN: 978-3-540-28520-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics