Skip to main content

Broadband Irradiances and Heating Rates for Cloudy Atmospheres

  • Chapter
3D Radiative Transfer in Cloudy Atmospheres

Part of the book series: Physics of Earth and Space Environments ((EARTH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker, H.W. and Q. Fu (2000). Assessment and optimization of the gamma-weighted two-stream approximation. J. Atmos. Sci., 57, 1181–1188.

    Article  Google Scholar 

  • Barker, H.W. and B.A. Wielicki (1997). Parameterizing grid-averaged longwave fluxes for inhomogenous marine boundary layer clouds. J. Atmos. Sci., 54, 2785–2798.

    Article  Google Scholar 

  • Barker, H.W., B.A. Wielicki, and L. Parker (1996). A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds-Part 2, Validation using satellite data. J. Atmos. Sci., 53, 2304–2316.

    Article  Google Scholar 

  • Barker, H.W., J.-J. Morcrette, and G.D. Alexander (1998). Broadband solar fluxes and heating rates for atmospheres with 3D broken clouds. Quart. J. Roy. Meteor. Soc., 124, 1245–1271.

    Article  Google Scholar 

  • Barker, H.W., G.L. Stephens, and Q. Fu (1999). The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc., 125, 2127–2152.

    Article  Google Scholar 

  • Barker, H.W., G.L. Stephens, P.T. Partain, J.W. Bergman, B. Bonnel, K. Campana, E.E. Clothiaux, S. Clough, S. Cusack, J. Delamere, J. Edwards, K.F. Evans, Y. Fouquart, S. Freidenreich, V. Galin, Y. Hou, S. Kato, J. Li, E. Mlawer, J.-J. Morcrette, W. O’Hirok, P. Räisänen, V. Ramaswamy, B. Ritter, E. Rozanov, M. Schlesinger, K. Shibata, P. Sporyshev, Z. Sun, M. Wendisch, N. Wood, and F. Yang (2003). Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 2676–2699.

    Article  Google Scholar 

  • Cess, R.D., M.-H. Zhang, G.L. Potter, H.W. Barker, R.A. Colman, D.A. Dazlich, A.D. Del Genio, M. Esch, J.R. Fraser, V. Galin, W.L. Gates, J.J. Hack, W. Ingram, J.T. Kiehl, A.A. Lacis, H. Le Treut, Z.-X. Li, X.-Z. Liang, J.F. Mahfouf, B.J. McAvaney, V.P. Meleshko, J.-J. Morcrette, D.A. Randall, E. Roeckner, J.-F. Royer, A.P. Sokolov, P.V. Sporyshev, K.E. Taylor, W.-C. Wang, and R.T. Wetherald (1993). Intercomparison of CO2 radiative forcing in atmospheric general circulation models. Science, 262, 1252–1255.

    Google Scholar 

  • Cess, R.D., M.-H. Zhang, P. Minnis, L. Corsetti, E.G. Dutton, B.W. Forgan, D.P. Garber, W.L. Gates, J.J. Hack, E.F. Harrison, X. Jing, J.T. Kiehl, C.N. Long, J.-J Morcrette, G. L. Potter, V. Ramanathan, B. Subasilar, C.H. Whitlock, D.F. Young, and Y. Zhou (1995). Absorption of solar radiation by clouds: Observations versus models. Science, 267, 496–499.

    Google Scholar 

  • Fouquart, Y., B. Bonnel, and V. Ramaswamy (1991). Intercomparing shortwave radiation codes for climate studies. J. Geophys. Res., 96, 8955–8968.

    Google Scholar 

  • Fu, Q. and K.-N. Liou (1992). On the correlated-k distribution method for radiative transfer in inhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156.

    Article  Google Scholar 

  • Geleyn, J.-F. and A. Hollingsworth (1979). An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Contrib. Atmos. Phys., 52, 1–16.

    Google Scholar 

  • Grabowski, W.W., X. Wu, M.W. Moncrieff, and W.D. Hall (1998). Cloud-resolving modeling of cloud systems during phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 3264–3282.

    Article  Google Scholar 

  • Hansen, J.E. and L.D. Travis (1974). Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.

    Article  Google Scholar 

  • Hogan, R.J. and A.J. Illingworth (2000). Derived cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc., 126, 2903–2909.

    Article  Google Scholar 

  • Hu, Y.-X. and K. Stamnes (1993). An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728–742.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (1996). The Science of Climate Change: Report of the Intergovernmental Panel on Climate Change (IPCC), J.T. Houghton et al. (eds.). Cambridge University Press, New York (NY).

    Google Scholar 

  • Lacis, A.A. and V. Oinas (1991). A description of the correlated-k method for modeling nongrey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 9027–9063.

    Google Scholar 

  • Lacis, A.A., W.C. Wang, and J.E. Hansen (1979). Correlated-k method for radiative transfer in climate models: Application to the effect of cirrus clouds on climate. Technical Report NASA Conf. Publ. 2076, NASA.

    Google Scholar 

  • Li, J. (2002). Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part I: Solution for radiative transfer, scattering, and cloud overlap. J. Atmos. Sci., 59, 3302–3320.

    Article  Google Scholar 

  • Li, J. and H.W. Barker (2002). Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part II: Horizontal variability of cloud water path. J. Atmos. Sci., 59, 3321–3339.

    Article  Google Scholar 

  • Liou, K.-N. (1992). Radiation and Cloud Processes in the Atmosphere. Oxford University Press, New York (NY).

    Google Scholar 

  • Meador, W.E. and W.R. Weaver (1980). Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630–643.

    Article  Google Scholar 

  • Mlawer, E.J., P.D. Brown, S.A. Clough, L.C. Harrison, J.J. Michalsky, P.W. Kiedron, and T. Shippert (2000). Comparison of spectral direct and diffuse solar irradiance measurements and calculations for cloud-free conditions. Geophys. Res. Lett., 27, 2653–2656.

    Article  Google Scholar 

  • O’Hirok, W. and C. Gautier (1998a). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects. J. Atmos. Sci., 55, 2162–2179.

    Article  Google Scholar 

  • O’Hirok, W. and C. Gautier (1998b). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part II: Spectral effects. J. Atmos. Sci., 55, 3065–3075.

    Article  Google Scholar 

  • Oreopoulos, L. and H.W. Barker (1999). Accounting for subgrid-scale cloud variability in a multi-layer, 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301–330.

    Article  Google Scholar 

  • Rossow, W.B. (1989). Measuring cloud properties from space: A review. J. Climate, 2, 201–213.

    Article  Google Scholar 

  • Schlesinger, M.E. and J.F.B. Mitchell (1987). Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Review of Geophys., 4, 760–798.

    Google Scholar 

  • Senior, C.A. (1999). Comparison of mechanisms of cloud-climate feedbacks in GCMs. J. Climate, 12, 1480–1489.

    Article  Google Scholar 

  • Slingo, A. (1989). A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 1419–1427.

    Article  Google Scholar 

  • Smith, R.N.B. (1990). A scheme for predicting layer clouds and their water content in a GCM. Quart. J. Roy. Meteor. Soc., 116, 435–460.

    Article  Google Scholar 

  • Stephens, G.L. (1988). Radiative transfer through arbitrary shaped optical media, II: Group theory and simple closures. J. Atmos. Sci., 45, 1837–1848.

    Article  Google Scholar 

  • Stokes, G.M. and S.E. Schwartz (1994). The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 1201–1221.

    Article  Google Scholar 

  • Warren, S.G., C.J. Hahn, J. London, R.M. Chervin, and R.L. Jenne (1986). Global distribution of total cloud cover and cloud type amounts over land. Technical Report TN-273+STR., NCAR, Boulder (CO).

    Google Scholar 

  • Welch, R.M. and B.A. Wielicki (1985). A radiative parameterization of stratocumulus cloud fields. J. Atmos. Sci., 42, 2888–2897.

    Article  Google Scholar 

Clouds, Radiation, and Climate

  • Cess, R.D., M.-H. Zhang, W.J. Ingram, G.L. Potter, V. Alekseev, H.W. Barker, E. Cohen-Solal, R.A. Colman, D.A. Dazlich, A.D. Del Genio, M.R. Dix, M. Esch, L.D. Fowler, J.R. Fraser, V. Galin, W.L. Gates, J.J. Hack, J.T. Kiehl, H. Le Treut, K.K.-W. Lo, B.J. McAvaney, V.P. Meleshko, J.-J. Morcrette, D.A. Randall, E. Roeckner, J.-F. Royer, M.E. Schlesinger, P.V. Sporyshev, B. Timbal, E.M. Volodin, K.E. Taylor, W.C. Wang and R.T. Wetherald (1996). Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101, 12,791–12,794.

    Google Scholar 

  • Cess, R.D., M.-H. Zhang, G.L. Potter, V. Alekseev, H.W. Barker, S. Bony, R.A. Colman, D.A. Dazlich, A.D. Del Genio, M. Déqué, M.R. Dix, V. Dymnikov, M. Esch, L.D. Fowler, J.R. Fraser, V. Galin, W.L. Gates, J.J. Hack, W.J. Ingram, J.T. Kiehl, Y. Kim, H. Le Treut, X.Z. Liang, B.J. McAvaney, V.P. Meleshko, J.-J. Morcrette, D.A. Randall, E. Roeckner, M.E. Schlesinger, P.V. Sporyshev, K.E. Taylor, B. Timbal, E.M. Volodin, W. Wang, W.C. Wang and R.T. Wetherald (1997). Comparison of the seasonal change in cloud-radiative forcing from atmospheric general circulation models and satellite observations. J. Geophys. Res., 102, 16,593–16,603.

    Article  Google Scholar 

  • Fu, Q., S.K. Krueger and K.-N. Liou (1995). Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52, 1310–1328.

    Article  Google Scholar 

  • Hansen, J.E., D. Russell, D. Rind, P. Stone, A. Lacis, L. Travis, S. Lebedeff and R. Ruedy (1983). Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev., 111, 609–662.

    Article  Google Scholar 

  • Liou, K.-N. (1992). Radiation and cloud processes in the atmosphere. Oxford University Press, New York, USA, 487pp.

    Google Scholar 

  • Mitchell, J.F.B., R.A. Davis, W.J. Ingram and C.A. Senior (1995). On surface temperature, greenhouse gases, and aerosols: Models and observations. J. Climate, 8, 2364–2386.

    Article  Google Scholar 

  • Potter, G.L., J.M. Slingo, J.-J. Morcrette and L. Corsetti (1992). A modelling perspective on cloud radiative forcing. J. Geophys. Res., 97, 20,507–20,518.

    Google Scholar 

  • Ramanathan, V. (1987). The role of Earth radiation budget studies in climate and general circulation research. J. Geophys. Res., 92, 4075–4095.

    Google Scholar 

  • Schlesinger, M.E. and J.F.B. Mitchell (1987). Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Rev. of Geophys., 4, 760–798.

    Google Scholar 

Clear Sky

  • Arking, A. and K. Grossman (1972). The influence of of line shape and band structure on temperatures in planetary atmospheres. J. Atmos. Sci., 29, 937–949.

    Article  Google Scholar 

  • Chou, M.D. and K.T. Lee (1996). Parameterizations for the absorption of solar radiation by water vapor and ozone, J. Atmos. Sci., 53, 1203–1208.

    Article  Google Scholar 

  • Clough, S.A., F.X. Kneizys and R.W. Davies (1989). Line shape and the water vapor continuum. Atmos. Res., 23, 229–241.

    Article  Google Scholar 

  • Fu, Q. and K.-N. Liou (1992). On the correlated-k distribution method for radiative transfer in inhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156.

    Article  Google Scholar 

  • Kato, S, T.P. Ackerman, J.H. Mather and E.E. Clothiaux (1999). The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109–121.

    Article  Google Scholar 

  • Lacis, A.A. and V. Oinas (1991). A description of the correlated-k method for modeling nongrey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 9027–9063.

    Google Scholar 

  • Wiscombe, W.J. and J.W. Evans (1976). Exponential-sum fitting of radiative transmission functions. J. Comp. Phys., 24, 416–444.

    Article  Google Scholar 

Ocean Albedo

  • Cox, C. and W. Munk (1956). Slopes of the sea surface deduced from photographs of the sun glitter. Bull. Scripps Inst. Ocean., 6, 401–488.

    Google Scholar 

  • Payne, R.E. (1972). Albedo of the sea surface. J. Atmos. Sci., 29, 959–970.

    Article  Google Scholar 

  • Preisendorfer, R.W. and C.D. Mobley (1986). Albedos and glitter patterns of a wind-roughened sea surface. J. Phy. Ocean., 16, 1293–1316.

    Article  Google Scholar 

Cloud Optical Properties

  • Fu, Q. and K.-N. Liou (1993). Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025.

    Article  Google Scholar 

  • Hu, Y.-X. and K. Stamnes (1993). An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728–742.

    Article  Google Scholar 

  • Li, J., S.M. Freidenreich and V. Ramaswamy (1997). Solar spectral weight at low cloud tops. J. Geophys. Res., 102, 11,139–11,143.

    Google Scholar 

  • Macke, A., J. Mueller and E. Raschke (1996). Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 2813–2825.

    Article  Google Scholar 

  • Räisänen, P. (1999). Parameterization of water and ice-cloud near-infrared single-scattering co-albedo in broadband radiation schemes. J. Atmos. Sci., 56, 626–641.

    Article  Google Scholar 

  • Slingo, A. (1989). A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 1419–1427.

    Article  Google Scholar 

  • Stephens, G.L. and S.-C. Tsay (1990). On the cloud absorption anomaly. Quart. J. Roy. Meteo. Soc.; 116, 671–704.

    Article  Google Scholar 

  • Sun, Z. and K.P. Shine (1994). Studies of the radiative properties of ice and mixed-phase clouds. Quart. J. Roy. Meteo. Soc.; 120, 111–137.

    Article  Google Scholar 

1D Models

  • Edwards, J.M. and A. Slingo (1996). Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteo. Soc.; 122, 689–719.

    Article  Google Scholar 

  • Fouquart, Y. and B. Bonnel (1980). Computations of solar heating of the Earth’s atmosphere: A new parameterization. Cont. Atmos. Phys., 53, 35–62.

    Google Scholar 

  • Li., J. (2002). Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part I: Solution for radiative transfer, scattering, and cloud overlap. J. Atmos. Sci., 59, 3302–3320.

    Article  Google Scholar 

  • Ramaswamy, V. and S. Freidenreich (1991). Solar radiative line-by-line determination of water vapor absorption and water cloud extinction in inhomogeneous atmospheres. J. Geophys. Res., 96, 9133–9157.

    Google Scholar 

  • Ritter, B. and J.-F. Geleyn (1992). A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303–325.

    Article  Google Scholar 

1D Models and Unresolved Clouds

  • Barker, H.W. and B.A. Wielicki (1997). Parameterizing grid-averaged longwave fluxes for inhomogeneous marine boundary layer clouds. J. Atmos. Sci., 54, 2785–2798.

    Article  Google Scholar 

  • Cairns, B., A.A. Lacis and B.E. Carlson (2000). Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57, 700–714.

    Article  Google Scholar 

  • Hogan, R.J. and A.J. Illingworth (2000). Derived cloud overlap statistics from radar. Quart. J. Roy. Meteo Soc., 126, 2903–2909.

    Article  Google Scholar 

  • Li, J. and H.W. Barker (2002). Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part II: Horizontal variability of cloud water path. J. Atmos. Sci., 59, 3321–3339.

    Article  Google Scholar 

  • Morcrette, J.-J. and Y. Fouquart (1986). The overlapping of cloud layers in shortwave radiation parameterizations. J. Atmos. Sci., 43, 321–328.

    Article  Google Scholar 

  • Oreopoulos, L. and H.W. Barker (1999). Accounting for subgrid-scale cloud variability in a multi-layer, 1D solar radiative transfer algorithm. Quart. J. Roy. Meteo. Soc., 125, 301–330.

    Article  Google Scholar 

  • Stubenrauch, C.J., A.D. Del Genio and W.B. Rossow (1997). Implementation of sub-grid cloud vertical structure inside a GCM and its effects on the radiation budget. J. Climate, 10, 273–287.

    Article  Google Scholar 

  • Tian, L. and J.A. Curry (1989). Cloud overlap statistics. J. Geophys. Res., 94, 9925–9935.

    Google Scholar 

3D Simulations

  • Barker, H.W., J.-J. Morcrette and G.D. Alexander (1998). Broadband solar fluxes and heating rates for atmospheres with 3D broken clouds. Quart. J. Roy. Meteo. Soc., 124, 1245–1271.

    Article  Google Scholar 

  • Barker, H.W., G.L. Stephens and Q. Fu (1999). The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteo. Soc., 125, 2127–2152.

    Article  Google Scholar 

  • O’Hirok, W. and C. Gautier (1998). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects. J. Atmos. Sci., 55, 2162–2179.

    Article  Google Scholar 

  • O’Hirok, W. and C. Gautier (1998). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part II: Spectral effects. J. Atmos. Sci., 55, 3065–3075.

    Article  Google Scholar 

Model Intercomparisons

  • Barker, H.W., G.L. Stephens, P.T. Partain, J.W. Bergman, B. Bonnel, K. Campana, E.E. Clothiaux, S.A. Clough, S. Cusack, J. Delamere, J. Edwards, K.F. Evans, Y. Fouquart, Freidenreich, S., Galin, V., Hou, Y., Kato, S., Li, J., E. Mlawer, J.-J. Morcrette, W. O’Hirok, P. Räisänen, V. Ramaswamy, B. Ritter, E. Rozanov, M. Schlesinger, K. Shibata, P. Sporyshev, Z. Sun, M. Wendisch, N. Wood and F. Yang (2003). Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 2676–2699.

    Article  Google Scholar 

  • Boucher, O., S.E. Schwartz, T.P. Ackerman, T.L. Anderson, B. Bergstrom, B. Bonnel, P. Chylek, A. Dahlback, Y. Fouquart, Q. Fu, R.N. Halthore, J.M. Haywood, T. Iverson, S. Kato, S. Kinne, A. Kirkevag, K.R. Knapp, A. Lacis, I. Laszlo, M.I. Mishchenko, S. Nemesure, V. Ramaswamy, D. L. Roberts, P. Russell, M.E. Schlesinger, G.L. Stephens, R. Wagener, M. Wang, J. Wong and F. Yang (1998). Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols. J. Geophys. Res., 103, 16,979–16,998.

    Article  Google Scholar 

  • Cess, R.D., M.-H. Zhang, G.L. Potterd H.W. Barker, R.A. Colman, D.A. Dazlich, A.D. Del Genio, M. Esch, J.R. Fraser, V. Galin, W.L. Gates, J.J. Hack, W. Ingram, J.T. Kiehl, A.A. Lacis, H. Le Treut, Z.-X. Li, X.-Z. Liang, J.F. Mahfouf, B.J. McAvaney, V.P. Meleshko, J.-J. Morcrette, D.A. Randall, E. Roeckner, J.-F. Royer, A.P. Sokolov, P.V. Sporyshev, K.E. Taylor, W.-C. Wang and R.T. Wetherald (1993). Intercomparison of CO2 radiative forcing in atmospheric general circulation models. Science, 262, 1252–1255.

    Google Scholar 

  • Ellingson, R.G. and Y. Fouquart (1991). The intercomparison of radiation codes in climate models (ICRCCM): An overview. J. Geophys. Res., 96, 8926–8929.

    Google Scholar 

  • Fouquart, Y., B. Bonnel and V. Ramaswamy (1991). Intercomparing shortwave radiation codes for climate studies. J. Geophys. Res., 96, 8955–8968.

    Article  Google Scholar 

  • Kinne, S., R. Bergstrom, O.B. Toon, E. Dutton and M. Shiobara (1998). Clear-sky atmospheric solar transmission: An analysis based on FIRE 1991 field experiment data. J. Geophys. Res., 103, 19,709–19,720.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barker, H. (2005). Broadband Irradiances and Heating Rates for Cloudy Atmospheres. In: Marshak, A., Davis, A. (eds) 3D Radiative Transfer in Cloudy Atmospheres. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28519-9_9

Download citation

Publish with us

Policies and ethics