Skip to main content

Part of the book series: Physics of Earth and Space Environments ((EARTH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antyufeev, V.S. (1996). Solution of the generalized transport equation with a peakshaped indicatrix by the Monte Carlo method. Russ. J. Numer. Anal. and Modeling, 11, 113–137.

    Article  Google Scholar 

  • Balsara, D. (2001). Fast and accurate discrete ordinate methods for multidimensional radiative transfer. Part I, basic methods. J. Quant. Spectrosc. Radiat. Transfer, 69, 671–707.

    Article  Google Scholar 

  • Cahalan, R.F., L. Oreopoulos, A. Marshak, K.F. Evans, A.B. Davis, R. Pincus, K. Yetzer, B. Mayer, R. Davies, T.P. Ackerman, H.W. Barker, E.E. Clothiaux, R.G. Ellingson, M.J. Garay, E. Kassianov, S. Kinne, A. Macke, W. O’Hirok, P.T. Partain, S.M. Prigarin, A.N. Rublev, G.L. Stephens, F. Szczap, E.E. Takara, T. Várnai, G. Wen, and T.B. Zhuravleva (2005). The international Intercomparison of 3D Radiation Codes (I3RC): Bringing together the most advanced radiative transfer tools for cloudy atmospheres. Bull. Amer. Meteor. Soc., to appear in Sept 2005 issue.

    Google Scholar 

  • Carlson, B.G. and K.D. Lathrop (1968). Transport theory — the method of discrete ordinates. In Computing Methods in Reactor Physics. Gordon & Breach, New York (NY).

    Google Scholar 

  • Chandrasekhar, S. (1950). Radiative Transfer. Oxford University Press, reprinted by Dover Publications (1960), New York (NY).

    Google Scholar 

  • de Oliveira, C.R.E. (1986). An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering. Prog. in Nuclear Engin., 18, 227–236.

    Article  Google Scholar 

  • Evans, K.F. (1993). Two-dimensional radiative transfer in cloudy atmospheres: The spherical harmonic spatial grid method. J. Atmos. Sci., 50, 3111–3124.

    Article  Google Scholar 

  • Evans, K.F. (1998). The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429–446.

    Article  Google Scholar 

  • Fiveland, W.A. (1988). Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method. J. Thermophysics and Heat Transfer, 2, 309–316.

    Article  Google Scholar 

  • Gabriel, P.M., S.-C. Tsay, and G.L. Stephens (1993). A Fourier-Riccati approach to radiative transfer. Part I: Foundations. J. Atmos. Sci., 50, 3125–3147.

    Article  Google Scholar 

  • Gerstl, S.A. and A. Zardecki (1985). Discrete-ordinate finite-element method for atmospheric radiative transfer and remote sensing. Appl. Optics, 24, 81–93.

    Google Scholar 

  • Grant, I.P. and G.E. Hunt (1969). Discrete space theory of radiative transfer i: Fundamentals. Proc. Roy. Soc. London, A313, 183–197.

    Google Scholar 

  • Haferman, J.L., T.F. Smith, and W.F. Krajewski (1997). A multi-dimensional discrete-ordinates method for polarized radiative transfer. I. Validation for randomly oriented axisymmetric particles. J. Quant. Spectrosc. Radiat. Transfer, 58, 379–398.

    Article  Google Scholar 

  • Kuo, K.-S., R.C. Weger, R.M. Welch, and S.K. Cox (1996). The Picard iterative approximation to the solution of the integral equation of radiative transfer. Part II: Three-dimensional geometry. J. Quant. Spectrosc. Radiat. Transfer, 55, 195–213.

    Article  Google Scholar 

  • Larsen, E.W. (1982). Unconditionally stable diffusion synthetic acceleration methods for the slab geometry discrete ordinates equations. Part I: Theory. Nuclear Sci. Engin., 82, 47.

    Google Scholar 

  • Lathrop, K.D. (1966). Use of discrete-ordinate methods for solution of photon transport problems. Nuclear Sci. Engin., 24, 381–388.

    Google Scholar 

  • L’Ecuyer, P. (1998). Random number generation. In The Handbook of Simulation. J. Banks (ed.). Wiley and Sons, New York (NY), pp. 93–137.

    Google Scholar 

  • Lenoble, J. (ed.) (1985). Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. Deepak Publishing, Hampton (VA).

    Google Scholar 

  • Liou, K.-N. and N. Rao (1996). Radiative transfer in cirrus clouds. Part IV: On the cloud geometry, inhomogeneity, and absorption. J. Atmos. Sci., 53, 3046–3065.

    Article  Google Scholar 

  • Lyapustin, A.I. and T.Z. Muldashev (2001). Solution for atmospheric optical transfer function using spherical harmonic method. J. Quant. Spectrosc. Radiat. Transfer, 68, 43–56.

    Article  Google Scholar 

  • Marchuk, G., G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin, and B. Elepov (1980). The Monte Carlo Methods in Atmospheric Optics. Springer-Verlag, New York (NY).

    Google Scholar 

  • Marshak, R.E. (1947). Note on the spherical harmonic methods as applied to the Milne problem for a sphere. Phys. Rev., 71, 443–446.

    Article  Google Scholar 

  • Martonchik, J.V. and D.J. Diner (1985). Three-dimensional radiative transfer using a Fourier-transform matrix-operator method. J. Quant. Spectrosc. Radiat. Transfer, 34, 133–148.

    Article  Google Scholar 

  • Modest, M.F. (1993). Radiative Heat Transfer. McGraw-Hill, Inc., New York (NY).

    Google Scholar 

  • Nakajima, T. and M. Tanaka (1988). Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40, 51–69.

    Article  Google Scholar 

  • Oreopoulos, L. and R. Davies (1998). Plane parallel albedo biases from satellite observations. Part I: Dependence on resolution and other factors. J. Climate, 11, 919–932.

    Article  Google Scholar 

  • Papoulis, A. (1965). Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (NY).

    Google Scholar 

  • Ramone, G.L., M.L. Adams, and P.F. Nowak (1997). A transport synthetic acceleration method for transport iterations. Nuclear Sci. Engin., 125, 257.

    Google Scholar 

  • Sanchez, A., T.F. Smith, and W.F. Krajewski (1994). A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method. Atmos. Research, 33, 283–308.

    Article  Google Scholar 

  • Sobol, I.M. (1974). The Monte Carlo Method. The University of Chicago Press, Chicago (IL).

    Google Scholar 

  • Stamnes, K., S.-C. Tsay, W.J. Wiscombe, and K. Jayaweera (1988). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509.

    Google Scholar 

  • Stenholm, L.G., H. Storzer, and R. Wehrse (1991). An efficient method for the solution of 3D radiative transfer problems. J. Quant. Spectrosc. Radiat. Transfer, 45, 47–56.

    Article  Google Scholar 

  • Stephens, G.L. (1988). Radiative transfer through arbitrary shaped optical media, I: A general method of solution. J. Atmos. Sci., 45, 1818–1836.

    Article  Google Scholar 

  • Stevens, B., C.-H. Moeng, and P.P. Sullivan (1999). Large-Eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 3963–3984.

    Article  Google Scholar 

  • Thomas, G. and K. Stamnes (1999). Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, New York (NY).

    Google Scholar 

  • Tofsted, D.H. and S.G. O’Brien (1998). Physics-based visualization of dense natural clouds. I. Three-dimensional discrete-ordinates radiative transfer. Appl. Optics, 37, 7718–7728.

    Article  Google Scholar 

  • Truelove, J.S. (1988). Three-Dimensional radiation in absorbing-emitting-scattering media using the discrete-ordinates approximation. J. Quant. Spectrosc. Radiat. Transfer, 39, 27–31.

    Article  Google Scholar 

  • Wiscombe, W.J. (1977). The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 1408–1422.

    Article  Google Scholar 

• for Explicit Methods

  • Evans, K.F. (1993). Two-dimensional radiative transfer in cloudy atmospheres: The spherical harmonic spatial grid method. J. Atmos. Sci., 50, 3111–3124.

    Article  Google Scholar 

  • Evans, K.F. (1998). The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429–446.

    Article  Google Scholar 

  • Gerstl, S.A. and A. Zardecki (1985). Discrete-ordinate finite-element method for atmospheric radiative transfer and remote sensing. Appl. Optics, 24, 81–93.

    Article  Google Scholar 

  • Lewis, E.E. and W.F. Miller, Jr. (1993). Computational Methods of Neutron Transport. xvi+401 pp., American Nuclear Society, La Grange Park (IL).

    Google Scholar 

  • Modest, M.F. (1993). Radiative Heat Transfer. McGraw-Hill, Inc., New York (NY).

    Google Scholar 

  • Thomas G. and K. Stamnes (1999). Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, New York (NY).

    Google Scholar 

• for Monte Carlo Methods

  • Barker, H.W., J.-J. Morcrette and G.D. Alexander (1998). Broadband solar fluxes and heating rates for atmospheres with 3D broken clouds. Quart. J. Roy. Meteor. Soc., 124, 1245–1271.

    Article  Google Scholar 

  • Cahalan, R.F., W. Ridgway, W.J. Wiscombe, S. Gollmer and Harshvardhan (1994). Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos. Sci., 51, 3776–3790.

    Article  Google Scholar 

  • Davies, R. (1978). The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds. J. Atmos. Sci., 35, 1712–1725.

    Article  Google Scholar 

  • Marchuk, G., G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin and B. Elepov (1980). The Monte Carlo Methods in Atmospheric Optics. 208 pp., Springer-Verlag, New-York (NY).

    Google Scholar 

  • McKee, T.B. and S.K. Cox (1974). Scattering of visible radiation by finite clouds. J. Atmos. Sci., 31, 1885–1892.

    Article  Google Scholar 

  • O’Brien, D.M. (1992). Accelerated quasi-Monte Carlo integration of the radiative transfer equation. J. Quant. Spectrosc. Radiat. Transfer, 48, 41–59.

    Article  Google Scholar 

  • O’Hirok, W. and C. Gautier (1998). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects. J. Atmos. Sci., 55, 2162–2179.

    Article  Google Scholar 

  • Takara, E.E. and R.G. Ellingson (1996). Scattering effects on longwave fluxes in broken cloud fields. J. Atmos. Sci., 53, 1464–1476.

    Article  Google Scholar 

  • Titov, G.A., T.B. Zhuravleva, and V.E. Zuev (1997). Mean radiation fluxes in the near-IR spectral range: Algorithms for calculation. J. Geophys. Res., 102(D2), 1819–1832.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evans, K., Marshak, A. (2005). Numerical Methods. In: Marshak, A., Davis, A. (eds) 3D Radiative Transfer in Cloudy Atmospheres. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28519-9_4

Download citation

Publish with us

Policies and ethics