Skip to main content

Photon Paths and Cloud Heterogeneity: An Observational Strategy to Assess Effects of 3D Geometry on Radiative Transfer

  • Chapter
3D Radiative Transfer in Cloudy Atmospheres

Part of the book series: Physics of Earth and Space Environments ((EARTH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker, H.W., B.A. Wielicki, and L. Parker (1996). A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds-Part 2, Validation using satellite data. J. Atmos. Sci., 53, 2304–2316.

    Article  Google Scholar 

  • Burrows, J.P., M. Weber, M. Buchwitz, V.V Rozanov, A. Ladstaetter-Weisenmeyer, A. Richter, R. de Beek, R. Hoogen, K. Bramstadt, K.U. Eichmann, M Eisinger, and D. Perner (1999). The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56, 151–175.

    Article  Google Scholar 

  • Chamberlain, J.W. and D.M. Hunten (1987). Theory of Planetary Atmospheres. Academic Press, San Diego (CA).

    Google Scholar 

  • Davis, A. and A. Marshak (1997). Lévy kinetics in slab geometry: Scaling of transmission probability. In Fractal Frontiers. M.M. Novak and T.G. Dewey (eds.). World Scientific, Singapore, pp. 63–72.

    Google Scholar 

  • Davis, A.B. and A. Marshak (2004). Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean-free-paths and wider-than-exponential free-path distributions. J. Quant. Spectrosc. Radiat. Transfer, 84, 3–34.

    Article  Google Scholar 

  • Davis, A.B., D.M. Winker, and M.A. Vaughan (2001). First retrievals of dense cloud properties from off-beam/multiple-scattering lidar data collected in space. In Laser Remote Sensing of the Atmosphere, Selected Papers from the 20th International Conference on Laser Radar. A. Dabas and J. Pelon (eds.). Vichy (France), pp. 35–38.

    Google Scholar 

  • Fischer, J. and H. Grassl (1991). Detection of cloud top height from backscattered radiances within the oxygen A-band. Part I: Theoretical study. J. Appl. Meteor., 30, 1245–1259.

    Article  Google Scholar 

  • Harrison, L.C. and Q. Min (1997). Photon path distributions from O2 A-Band absorption. In IRS’96 Current Problems in Atmospheric Radiation (Proc. Intl. Rad. Symposium, Fairbanks AK). W.L. Smith and K. Stamnes (eds.). A. Deepak Press, Hampton (VA), pp. 594–598.

    Google Scholar 

  • Harrison, L.C., M. Beauharnois, J. Berndt, P. Kierdrom, J. Michalsky, and Q-L. Min (1999). The rotating shadowband radiometer (RSS) at the Southern Great Plains (SGP). Geophys. Res. Lett., 26, 1715–1718.

    Article  Google Scholar 

  • Harshvardhan, B. Wielicki, and K.M. Ginger (1994). The interpretation of remotely sensed cloud properties from a model paramerization perspective. J. Climate, 7, 1987–1998.

    Article  Google Scholar 

  • Heidinger, A. and G.L. Stephens (2000). Molecular line absorption in a scattering atmosphere. II: Application to remote sensing in the O2 A-band. J. Atmos. Sci., 57, 1615–1634.

    Article  Google Scholar 

  • Heidinger, A. and G.L. Stephens (2002). Molecular line absorption in a scattering atmosphere. III: Path length characteristics and effects of spatially heterogeneous clouds. J. Atmos. Sci., 59, 1641–1654.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2001). Synthesis Report; Stand-alone edition, R.T. Watson et al. (eds.). Intergovernmental Panel on Climate Change, Geneva (Switzerland).

    Google Scholar 

  • Irvine, W.M. (1964). The formation of absorption bands and the distribution of photon optical paths in a scattering atmosphere. Bull. Astron. Inst. Neth., 17, 226–279.

    Google Scholar 

  • Love, S.P., A.B. Davis, C. Ho, and C.A. Rohde (2001). Remote sensing of cloud thickness and liquid water content with Wide-Angle Imaging Lidar (WAIL). Atmos. Res., 59–60, 295–312.

    Article  Google Scholar 

  • Min, Q.-L. and L.C. Harrison (1999). Joint statistics of photon pathlength and cloud optical depth. Geophys. Res. Lett., 26, 1425–1428.

    Article  Google Scholar 

  • Min, Q.-L., L.C. Harrison, and E.E. Clothiaux (2001). Joint statistics of photon pathlength and cloud optical depth: Case studies. J. Geophys. Res., 106, 7375–7385.

    Article  Google Scholar 

  • Min, Q.-L., L.C. Harrison, P. Kiedron, J. Berndt, and E. Joseph (2004). A highresolution oxygen A-band and water vapor band spectrometer. J. Geophys. Res., 109, D02202, doi:10.1029/2003JD003540.

    Article  Google Scholar 

  • Minnis, P., P.W. Heck, D.F. Young, and B.J. Snider (1993). Stratocumulus cloud properties derived from simultaneous satellite and island-based instruments during FIRE. J. Atmos. Sci., 54, 1525–1532.

    Google Scholar 

  • Mitchell, R.M. and D.M. O’Brien (1987). Error estimates for passive satellite measurement of surface pressure using absorption in the A-band of oxygen. J. Atmos. Sci., 44, 1981–1990.

    Article  Google Scholar 

  • Nakajima, T. and M.D. King (1990). Determination of optical thickness and effective radius of clouds from reflected solar radiation measurements: Part I: Theory. J. Atmos. Sci., 47, 1878–1893.

    Article  Google Scholar 

  • O’Brien, D. and R.M. Mitchell (1992). Error estimates for the retrieval of cloud top pressure using absorption in the A-band of Oxygen. J. Appl. Meteor., 31, 1179–1192.

    Article  Google Scholar 

  • O’Brien, D., R.M. Mitchell, S.A. English, and G.A. Da Costa (1999). Airborne measurements of air mass from O2 A-band absorption spectra. J. Atmos. Oceanic Tech., 15, 1272–1286.

    Article  Google Scholar 

  • Partain, P., A. Heidinger, and G.L. Stephens (2000). Spectral resolution atmospheric radiative transfer: Application of equivalence theorem. J. Geophys. Res., 105, 2163–2177.

    Article  Google Scholar 

  • Pfeilsticker, K. (1999). First geometrical pathlengths probability density function derivation of the skylight from spectroscopically highly resolving oxygen A-band observations. 2. Derivation of the Lévy-index for the skylight transmitted by midlatitude clouds. J. Geophys. Res., 104, 4101–4116.

    Article  Google Scholar 

  • Pfeilsticker, K., F. Erle, O. Funk, H. Veitel, and U. Platt (1998). First geometrical pathlengths probability density function derivation of the skylight from spectroscopically highly resolving oxygen A-band observations: 1. Measurement technique, atmospheric observations, and model calculations. J. Geophys. Res., 103, 11,483–11,504.

    Google Scholar 

  • Portmann, R.W., S. Solomon, R.W. Sanders, J.S. Daniel, and E. Dutton (2001). Cloud modulation of zenith sky oxygen path lengths over Boulder, Colorado: Measurement versus model. J. Geophys. Res., 106, 1139–1155.

    Article  Google Scholar 

  • Rozanov, V.V., A.A. Kokhanovsky, and J.P. Burrows (2004). The determination of cloud altitudes using GOME reflectance spectra: Multilayered cloud systems. IEEE Trans. Geosci. and Remote Sens., 42, 1009–1017.

    Article  Google Scholar 

  • Stephens, G.L. (1994). Remote Sensing of the Lower Atmosphere: An Introduction. Oxford University Press, New York (NY).

    Google Scholar 

  • Stephens, G.L. (1999). Radiative effects of clouds and water vapor. In Global Energy and Water Cycles. Browning and Gurney (eds.). Cambridge University Press, New York (NY), pp. 71–90.

    Google Scholar 

  • Stephens, G.L. and T.J. Greenwald (1990). The Earth’s radiation budget and its relation to atmospheric hydrology: 2. Observations of cloud effects. J. Geophys. Res., 96, 15,325–15,340.

    Google Scholar 

  • Stephens, G.L. and A. Heidinger (2000). Line absorption in a scattering atmosphere. I: Theory. J. Atmos. Sci., 57, 1599–1614.

    Article  Google Scholar 

  • Stephens, G.L., D. Vane, R. Boain, G. Mace, K. Sassen, Z. Wang, A. Illingworth, E. O’Connor, W. Rossow, S. Durden, S. Miller, R. Austin, A. Benedetti, C. Mitrescu, and CloudSat Science Team (2002). The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Metereol. Soc., 83, 1771–1790.

    Article  Google Scholar 

  • van de Hulst, H.C. (1980). Multiple Light Scattering: Tables, Formulae and Applications. Academic Press, San Diego (CA).

    Google Scholar 

  • Yamamoto, G.A. and D.Q. Wark (1961). Discussion of the letter by R.A. Hanel, Determination of cloud altitude from satellite. J. Geophys. Res., 66, 3596.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stephens, G., Heidinger, A., Gabriel, P. (2005). Photon Paths and Cloud Heterogeneity: An Observational Strategy to Assess Effects of 3D Geometry on Radiative Transfer. In: Marshak, A., Davis, A. (eds) 3D Radiative Transfer in Cloudy Atmospheres. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28519-9_13

Download citation

Publish with us

Policies and ethics