Skip to main content

Part of the book series: Physics of Earth and Space Environments ((EARTH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, E. (1884). Flatland: A Romance of Many Dimensions, Revised 1952 edition. Dover, New York (NY).

    Google Scholar 

  • Ackerman, T.P. and G.M. Stokes (2003). The Atmospheric Radiation Measurement program. Phys. Today, 56, 38–44.

    Google Scholar 

  • Appleby, J.F. and D. van Blerkom (1975). Absorption line studies of reflection from horizontally inhomogeneous layers. Icarus, 24, 51–69.

    Article  Google Scholar 

  • Arking, A. (1991). The radiative effects of clouds and their impact on climate. Bull. Amer. Meteor. Soc., 71, 795–813.

    Article  Google Scholar 

  • Baker, B. (1992). Turbulent entrainment and mixing in clouds: A new observational approach. J. Atmos. Sci., 49, 387–404.

    Article  Google Scholar 

  • Barker, H.W. and J.A. Davies (1989). Multiple reflections across a linear discontinuity in surface albedo. Internat. J. Climatology, 9, 203–214.

    Google Scholar 

  • Barker, H.W., G.L. Stephens, and Q. Fu (1999). The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc., 125, 2127–2152.

    Article  Google Scholar 

  • Barker, H.W., A. Marshak, W. Szyrmer, A. Trishchenko, J.-P. Blanchet, and Z. Li (2002a). Inference of cloud optical properties from aircraft-based solar radiometric measurements. J. Atmos. Sci., 59, 2093–2111.

    Article  Google Scholar 

  • Barker, H.W., R. Pincus, and J.-J. Morcrette (2002b). The Monte Carlo independent column approximation: Application within large-scale models. In Proceedings from the GCSS Workshop. Kananaskis, Alberta, Canada.

    Google Scholar 

  • Barker, H.W., G.L. Stephens, P.T. Partain, J.W. Bergman, B. Bonnel, K. Campana, E.E. Clothiaux, S. Clough, S. Cusack, J. Delamere, J. Edwards, K.F. Evans, Y. Fouquart, S. Freidenreich, V. Galin, Y. Hou, S. Kato, J. Li, E. Mlawer, J.-J. Morcrette, W. O’Hirok, P. Räisänen, V. Ramaswamy, B. Ritter, E. Rozanov, M. Schlesinger, K. Shibata, P. Sporyshev, Z. Sun, M. Wendisch, N. Wood, and F. Yang (2003). Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 2676–2699.

    Article  Google Scholar 

  • Baumgardner, D., B. Baker, and K. Weaver (1993). A technique for the measurement of cloud structure on centimeter scales. J. Atmos. Oceanic Technol., 10, 557–565.

    Article  Google Scholar 

  • Bohren, C.F., J.R. Linskens, and M.E. Churma (1995). At what optical thickness does a cloud completely obscure the sun? J. Atmos. Sci., 52, 1257–1259.

    Article  Google Scholar 

  • Bretherton, C., T. Uttal, C. Fairall, S. Yuter, R. Weller, D. Baumgardner, K. Comstock, R. Wood, and G. Raga (2004). The EPIC stratocumulus study. Bull. Amer. Meteor. Soc., DOI: 10.1175/BAMS-85-7-967.

    Google Scholar 

  • Cahalan, R.F. (1991). Landsat observations of fractal cloud structure. In Nonlinear Variability in Geophysics. Kluwer, Inc., D. Schertzer and S. Lovejoy (eds.). pp. 281–295.

    Google Scholar 

  • Cahalan, R.F. and J.H. Joseph (1989). Fractal statistics of cloud fields. Mon. Wea. Rev., 117, 261–272.

    Article  Google Scholar 

  • Cahalan, R.F., M. McGill, J. Kolasinski, T. Várnai, and K. Yetzer (2005). THOR-cloud THickness from Offbeam lidar Returns. J. Atmos. Ocean. Tech., 22, 605–627.

    Article  Google Scholar 

  • Cess, R.D., G.L. Potter, J.-P. Blanchet, G.J. Boer, S.J. Ghan, J.T. Kiehl, S.B.A. Liang, J.F.B. Mitchell, D.A. Randall, M.R. Riches, E. Roeckner, U. Schlese, A. Slingo, K.E. Taylor, W.M. Washington, R.T. Wetherald, and I. Yagai (1989). Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513–516.

    Google Scholar 

  • Cess, R.D., M.-H. Zhang, P. Minnis, L. Corsetti, E.G. Dutton, B.W. Forgan, D.P. Garber, W.L. Gates, J.J. Hack, E.F. Harrison, X. Jing, J.T. Kiehl, C.N. Long, J.-J Morcrette, G.L. Potter, V. Ramanathan, B. Subasilar, C.H. Whitlock, D.F. Young, and Y. Zhou (1995). Absorption of solar radiation by clouds: Observations versus models. Science, 267, 496–499.

    Google Scholar 

  • Chiu, J.-Y., A. Marshak, and W.J. Wiscombe (2004). The effect of surface heterogeneity on cloud absorption estimate. Geophys. Res. Lett., 31, L15105.

    Article  Google Scholar 

  • Coakley, J.A., M. Friedman, and W. Tahnk (2005). Retrieval of cloud properties for partly cloudy imager pixels. J. Atmos. Ocean. Tech., 22, 3–17.

    Article  Google Scholar 

  • Davies, R. (1984). Reflected solar radiances from broken cloud scenes and the interpretation of scanner measurements. J. Geophys. Res., 89, 1259–1266.

    Google Scholar 

  • Davis, A.B. (2002). Cloud remote sensing with sideways-looks: Theory and first results using Multispectral Thermal Imager (MTI) data. In SPIE Proceedings: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII. S.S. Shen and P.E. Lewis (eds.). S.P.I.E. Publications, Bellingham, WA, pp. 397–405.

    Google Scholar 

  • Davis, A.B. and A. Marshak (2002). Space-time characteristics of light transmitted through dense clouds: A Green function analysis. J. Atmos. Sci., 59, 2714–2728.

    Article  Google Scholar 

  • Davis, A.B. and A. Marshak (2004). Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean-free-paths and wider-than-exponential free-path distributions. J. Quant. Spectrosc. Radiat. Transfer, 84, 3–34.

    Article  Google Scholar 

  • Davis, A., A. Marshak, W.J. Wiscombe, and R.F. Cahalan (1994). Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated. J. Geophys. Res., 99, 8055–8072.

    Article  Google Scholar 

  • Davis, A., A. Marshak, R.F. Cahalan, and W.J. Wiscombe (1997). The LANDSAT scale-break in stratocumulus as a three-dimensional radiative transfer effect, Implications for cloud remote sensing. J. Atmos. Sci., 54, 241–260.

    Article  Google Scholar 

  • Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill, and S.P. Love (1999). Offbeam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.

    Google Scholar 

  • Davis, P.J. and P. Rabinowitz (1984). Methods of numerical integration. Academic Press, New York (NY), 2nd edition.

    Google Scholar 

  • Deirmendjian, D. (1969). Electromagnetic Scattering on Spherical Polydispersions. Elsevier, New York (NY).

    Google Scholar 

  • Deirmendjian, D. (1975). Far-infrared and submillimeter wave attenuation by clouds and rain. J. Appl. Meteor., 14, 1584–1593.

    Article  Google Scholar 

  • Diner, D.J., J.C. Beckert, T.H. Reilly, C.J. Bruegge, J.E. Conel, R.A. Kahn, J.V. Martonchik, T.P. Ackerman, R. Davies, S.A.W. Gerstl, H.R. Gordon, J.-P. Muller, R.B. Myneni, P.J. Sellers, B. Pinty, and M.M. Verstraete (1998). Multiangle Imaging Spectroradiometer MISR: Description and experiment overview. IEEE Trans. Geosci. and Remote Sens., 36, 1072–1087.

    Article  Google Scholar 

  • Dutton, E.G. (1993). An extended comparison between LOWTRAN7 computed and observed broadband thermal fluxes. J. Atmos. Oceanic Tech., 10, 326–336.

    Article  Google Scholar 

  • Dyson, F. (1999). The Sun, the Genome, & the Internet: Tools of Scientific Revolutions. Oxford Press, New York (NY).

    Google Scholar 

  • Ellingson, R.G. (1982). On the effects of cumulus dimensions on longwave irradiance and heating rate calculations. J. Atmos. Sci., 39, 886–896.

    Article  Google Scholar 

  • Ellingson, R.G. and Y. Fouquart (1991). The intercomparison of radiation codes in climate models (ICRCCM): An overview. J. Geophys. Res., 96, 8925–8927.

    Google Scholar 

  • Ellingson, R.G. and W.J. Wiscombe (1996). The Spectral Radiance Experiment (SPECTRE): Project description and sample results. Bull. Amer. Meteor. Soc., 77, 1967–1985.

    Article  Google Scholar 

  • Evans, K.F. (1998). The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429–446.

    Article  Google Scholar 

  • Evans, K.F. and W.J. Wiscombe (2004). An algorithm for generating stochastic cloud fields from radar profile statistics. Atmos. Res., 72, 263–289.

    Article  Google Scholar 

  • Evans, K.F., R.P. Lawson, P. Zmarzly, D. O’Connor, and W.J. Wiscombe (2003). In situ cloud sensing with multiple scattering lidar: Simulations and demonstration. J. Atmos. and Oceanic Tech., 20, 1505–1522.

    Article  Google Scholar 

  • Gilgen, H. and A. Ohmura (1999). The Global Energy Balance Archive (GEBA). Bull. Amer. Meteor. Soc., 80, 831–850.

    Article  Google Scholar 

  • Goodstein, R. (2004). Out of Gas: The End of the Age of Oil. Norton & Co., New York (NY).

    Google Scholar 

  • Greenwald, T., G. Stephens, T. Vonder Haar, and D. Jackson (1993). A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res., 98, 18,471–18,488.

    Google Scholar 

  • Gu, Y. and K.-N. Liou (2001). Radiation parameterization for three-dimensional inhomogeneous cirrus clouds: Application to climate models. J. Climate, 14, 2443–2457.

    Article  Google Scholar 

  • Hamblyn, R. (2001). The Invention of Clouds: How an Amateur Meteorologist Forged the Language of the Skies. Farrar, Straus and Giroux, New York (NY).

    Google Scholar 

  • Hansen, J.E. and L.D. Travis (1974). Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.

    Article  Google Scholar 

  • Harshvardhan and R. Thomas (1984). Solar reflection from interacting and shadowing cloud elements. J. Geophys. Res., 89, 7179–7185.

    Google Scholar 

  • Hartmann, D. and K. Larson (2002). An important constraint on tropical cloud-climate feedback. Geophys. Res. Lett., 29, 1951, 12-1–4.

    Google Scholar 

  • Hartmann, D., L. Moy, and Q. Fu (2001). Tropical convective clouds and the radiation balance at the top of the atmosphere. J. Climate, 14, 4495–4511.

    Article  Google Scholar 

  • Harwit, M. (2003). The growth of astrophysical understanding. Physics Today, 56, 38–43.

    Google Scholar 

  • Hasselmann, K. (1976). Stochastic climate models, Part 1: Theory. Tellus, 28, 473–485.

    Article  Google Scholar 

  • Heidinger, A. and G.L. Stephens (2000). Molecular line absorption in a scattering atmosphere. II: Application to remote sensing in the O2 A-band. J. Atmos. Sci., 57, 1615–1634.

    Article  Google Scholar 

  • Hobbs, P. (1991). Research on clouds and precipitation: Past, present and future, Part II. Bull. Amer. Meteor. Soc., 72, 184–191.

    Article  Google Scholar 

  • Holland, G., P. Webster, J. Curry, G. Tyrell, D. Gauntlett, G. Brett, J. Becker, R. Hoag, and W. Vaglienti (2001). The aerosonde robotic aircraft: A new paradigm for environmental observations. Bull. Amer. Meteor. Soc., 82, 889–902.

    Article  Google Scholar 

  • Horgan, J. (1996). The End of Science. Addison-Wesley, Reading (MA).

    Google Scholar 

  • Hunt, G.E. and I.P Grant (1969). Discrete space theory of radiative transfer and its application to problems in planetary atmospheres. J. Atmos. Sci., 26, 963–972.

    Article  Google Scholar 

  • Jakob, C. (2003). An improved strategy for the evaluation of cloud parameterizations in GCMs. Bull. Amer. Meteor. Soc., 84, 1387–1401.

    Article  Google Scholar 

  • Klose, A., U. Netz, J. Beuthan, and A. Hielscher (2002). Optical tomography using the time-independent equation of radiative transfer. Part I: Forward model. J. Quant. Spectrosc. Radiat. Transfer, 72, 691–713.

    Article  Google Scholar 

  • Knyazikhin, Yu., A. Marshak, W.J. Wiscombe, J. Martonchik, and R.B. Myneni (2002). A missing solution to the transport equation and its effect on estimation of cloud absorptive properties. J. Atmos. Sci., 59, 3572–3585.

    Article  Google Scholar 

  • Knyazikhin, Yu., A. Marshak, M.I. Larsen, W.J. Wiscombe, J. Martonchik, and R.B. Myneni (2005). Small-scale drop size variability: Impact on estimation of cloud optical properties. J. Atmos. Sci., in press.

    Google Scholar 

  • Kostinski, A. (2002). On the extinction of radiation by a homogeneous but spatially correlated random medium: Review and response to comments. J. Opt. Soc. Amer. A, 19, 2521–2525.

    Google Scholar 

  • Kostinski, A. and A. Jameson (2000). On the spatial distribution of cloud particles. J. Atmos. Sci., 57, 901–915.

    Article  Google Scholar 

  • Kostinski, A. and R.A. Shaw (2001). Scale-dependent droplet clustering in turbulent clouds. J. Fluid Mech., 434, 389–398.

    Article  Google Scholar 

  • Kustas, W., T. Jackson, J. Prueger, J. Hatfield, and M. Anderson (2003). Remote sensing field experiments evaluate retrieval algorithms and land-atmosphere modeling. EOS Trans. AGU, 84, 485 and 492–493.

    Google Scholar 

  • Liepert, B. (2002). Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys. Res. Lett., 29, 1421, doi:10.1029/2002GL014910.

    Article  Google Scholar 

  • Liepert, B., A. Anderson, and N. Ewart (2003). Spatial variability of atmospheric transparency in the New York metropolitan area in summer. AGU Fall Meeting.

    Google Scholar 

  • Lin, B., B. Wielicki, L. Chambers, Y.-X. Hu, and K. Xu (2002). The Iris Hypothesis: A negative or positive cloud feedback? J. Climate, 15, 3–7.

    Article  Google Scholar 

  • Love, S.P., A.B. Davis, C. Ho, and C.A. Rohde (2001). Remote sensing of cloud thickness and liquid water content with Wide-Angle Imaging Lidar (WAIL). Atmos. Res., 59–60, 295–312.

    Article  Google Scholar 

  • Lovejoy, S. (1982). The area-parameter relation for rain and clouds. Science, 216, 185–187.

    Google Scholar 

  • Manabe, S. and R.T.Wetherald (1967). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241–259.

    Article  Google Scholar 

  • Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. W. H. Freeman, New York (NY).

    Google Scholar 

  • Marchuk, G., G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin, and B. Elepov (1980). The Monte Carlo Methods in Atmospheric Optics. Springer-Verlag, New York (NY).

    Google Scholar 

  • Marshak, A., A. Davis, W.J. Wiscombe, and R.F. Cahalan (1995). Radiative smoothing in fractal clouds. J. Geophys. Res., 100, 26,247–26,261.

    Article  Google Scholar 

  • Marshak, A., A. Davis, W.J. Wiscombe, and R.F. Cahalan (1997). Inhomogeneity effects on cloud shortwave absorption measurements: Two-aircraft simulations. J. Geophys. Res., 102, 16,619–16,637.

    Article  Google Scholar 

  • Marshak, A., Yu. Knyazikhin, A.B. Davis, W.J. Wiscombe, and P. Pilewskie (2000). Cloud-vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett., 27, 1695–1698.

    Article  Google Scholar 

  • Marshak, A., Yu. Knyazikhin, K.D. Evans, and W.J. Wiscombe (2004). The “RED versus NIR” plane to retrieve broken-cloud optical depth from ground-based measurements. J. Atmos. Sci., 61, 1911–1925.

    Article  Google Scholar 

  • Marshak, A., Yu. Knyazikhin, M.L. Larsen, and W.J. Wiscombe (2005). Small-scale drop size variability: Empirical models for drop-size-dependent clustering in clouds. J. Atmos. Sci., 62, 551–558.

    Article  Google Scholar 

  • McKee, T.B. and S.K. Cox (1974). Scattering of visible radiation by finite clouds. J. Atmos. Sci., 31, 1885–1892.

    Article  Google Scholar 

  • Meerkotter, R. and M. Degunther (2001). A radiative transfer case study for 3-D cloud effects in the UV. Geophys. Res. Lett., 28, doi: 10.1029/2000GL011932.

    Google Scholar 

  • Min, Q.-L. and L.C. Harrison (1999). Joint statistics of photon pathlength and cloud optical depth. Geophys. Res. Lett., 26, 1425–1428.

    Article  Google Scholar 

  • Mishchenko, M.I., J.W. Hovenier, and D. Mackowski (2004). Single scattering by a small volume element. J. Opt. Soc. Am. A, 21, 71–87.

    Article  Google Scholar 

  • Nakajima, T. and M.D. King (1990). Determination of optical thickness and effective radius of clouds from reflected solar radiation measurements: Part I: Theory. J. Atmos. Sci., 47, 1878–1893.

    Article  Google Scholar 

  • Nunez, M., K. Fienberg, and C. Kuchinke (2005). Temporal structure of the solar radaition field in cloudy conditions: Are retrievals of hourly averages from space possible? J. Appl. Meteor., 44, 167–178.

    Article  Google Scholar 

  • O’Brien, D.M. (1992). Accelerated quasi Monte Carlo integration of the radiative transfer equation. J. Quant. Spect. Radiat. Transfer, 48, 41–59.

    Article  Google Scholar 

  • Ockert-Bell, M.E. and D.L. Hartmann (1992). The effect of cloud type on Earth’s energy balance: Results for selected regions. J. Climate, 5, 1157–1171.

    Article  Google Scholar 

  • Ohmura, A., E. Dutton, B. Forgan, C. Froelich, H. Gilgen, H. Hegner, A. Heimo, G. Konig-Langlo, B. McArthur, G. Muller, R. Philipona, R. Pinker, C. Whitlock, K. Dehne, and M. Wild (1998). Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Sci., 79, 2115–2136.

    Article  Google Scholar 

  • Palle, E., P.R. Goode, V. Yurchyshyn, J. Qiu, J. Hickey, P. Rodriguez, M.-C. Chu, E. Kolbe, C.T. Brown, and S.E. Koonin (2003). Earthshine and the Earth’s albedo: 2. Observations and simulations over three years. J. Geophys. Res., 108, 4710, doi:10.1029/2003JD003611.

    Article  Google Scholar 

  • Paltridge, G.W. (1975). Global dynamics and climate — a system of minimum entropy exchange. Quart. J. Roy. Meteor. Soc., 101, 475–484.

    Article  Google Scholar 

  • Petty, G.W. (2002). Area-average solar radiative transfer in three-dimensionally inhomogeneous clouds: The independently scattering cloudlets model. J. Atmos. Sci., 59, 2910–2929.

    Article  Google Scholar 

  • Pierluissi, J., K. Tomimaya, and R.B. Gomez (1987). Analysis of the LOWTRAN transmission functions. Appl. Opt., 18, 1607–1612.

    Google Scholar 

  • Pincus, R., C. Hannay, and K.F. Evans (2005). The accuracy of determining three-dimensional radiative transfer effects in cumulus clouds using ground-based profiling instruments. J. Atmos. Sci., in press.

    Google Scholar 

  • Pinsky, M. and A. Khain (2003). Fine structure of cloud droplet concentration as seen from the Fast-FSSP measurements. Part II: Results of in situ observations. J. Appl. Meteor., 42, 65–73.

    Article  Google Scholar 

  • Plass, G. and G. Kattawar (1968). Monte Carlo calculations of light scattering from clouds. Appl. Opt., 7, 415–419.

    Article  Google Scholar 

  • Polonsky, I.N., S.P. Love, and A.B. Davis (2005). Wide-Angle Imaging Lidar (WAIL) deployment at the ARM Southern Great Plains site: Intercomparison of cloud property retreivals. J. Atmos. Ocean. Tech., 22, 628–648.

    Article  Google Scholar 

  • Portmann, R.W., S. Solomon, R.W. Sanders, J.S. Daniel, and E. Dutton (2001). Cloud modulation of zenith sky oxygen path lengths over Boulder, Colorado: Measurement versus model. J. Geophys. Res., 106, 1139–1155.

    Article  Google Scholar 

  • Potter, G. and R.D. Cess (2004). Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J. Geophys. Res., 109, 1139–1155, doi:10.1029/2003JD004018.

    Article  Google Scholar 

  • Prata, A.J. and P.J. Turner (1997). Cloud-top height determination using ATSR data. Remote Sens. Envir., 59, 1–13.

    Article  Google Scholar 

  • Press, W., S. Teukolsky, W. Vettering, and B. Flannery (2000). Numerical Recipes in Fortran: The Art of Scientific Computing. Cambridge University Press, Cambridge (UK), 2nd edition.

    Google Scholar 

  • Ramanathan, V., R.D. Cess, E.F. Harrison, P. Minnis, B.R. Barkstrom, E. Ahmad, and D. Hartmann (1989). Cloud-radiative forcing and climate: Results from the Earth-radiation Budget Experiment. Science, 243, 57–63.

    Google Scholar 

  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski (2003). Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 1547–1564.

    Article  Google Scholar 

  • Randall, D., S. Krueger, C. Bretherton, J. Curry, P. Duynkerke, M. Moncrieff, B. Ryan, D. Starr, M. Miller, W. Rossow, G. Tselioudis, and B. Wielicki (2004). Confronting models with data: The GEWEX cloud systems study. Bull. Amer. Meteor. Soc., 84, 455–469.

    Article  Google Scholar 

  • Rossow, W.B. and E. Duenas (2004). The International Satellite Cloud Climatology Project (ISCCP) web site. Bull. Amer. Meteor. Soc., 85, 167–172.

    Article  Google Scholar 

  • Rossow, W.B. and R.A. Schiffer (1999). Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 11, 2261–2287.

    Article  Google Scholar 

  • Schneider, S. (1972). Cloudiness as a global climatic feedback mechanism. J. Atmos. Sci., 29, 1413–1422.

    Article  Google Scholar 

  • Senior, C.A. and J.F.B. Mitchell (1993). CO2 and climate: The impact of cloud parametrizations. J. Climate, 6, 393–418.

    Article  Google Scholar 

  • Shaw, R.A. (2003). Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183–227.

    Article  Google Scholar 

  • Shaw, R.A., A. Kostinski, and D. Lanterman (2002). Super-exponential extinction of radiation in a negatively-correlated random medium. J. Quant. Spect. Radiat. Transfer, 75, 13–20.

    Article  Google Scholar 

  • Sigl, G. (2001). Ultrahigh-energy cosmic rays: Physics and astrophysics at extreme energies. Science, 291, 73–79, doi:10.1126/science.291.5501.73.

    Article  Google Scholar 

  • Stamnes, K., S.-C. Tsay, W.J. Wiscombe, and K. Jayaweera (1988). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509.

    Article  Google Scholar 

  • Stephens, G.L. (1988a). Radiative transfer through arbitrary shaped optical media, I: A general method of solution. J. Atmos. Sci., 45, 1818–1836.

    Article  Google Scholar 

  • Stephens, G.L. (1988b). Radiative transfer through arbitrary shaped optical media, II: Group theory and simple closures. J. Atmos. Sci., 45, 1837–1848.

    Article  Google Scholar 

  • Stephens, G.L. (2003). The useful pursuit of shadows. American Scientist, 91, 442–449.

    Article  Google Scholar 

  • Stephens, G.L., D. Vane, R. Boain, G. Mace, K. Sassen, Z. Wang, A. Illingworth, E. O’Connor, W. Rossow, S. Durden, S. Miller, R. Austin, A. Benedetti, C. Mitrescu, and CloudSat Science Team (2002). The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Metereol. Soc., 83, 1771–1790.

    Article  Google Scholar 

  • Stevens, B., C.-H. Moeng, and P.P. Sullivan (1999). Large-Eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 3963–3984.

    Article  Google Scholar 

  • Stevens, B., D.H. Lenschow, G. Vali, H. Gerber, A. Bandy, B. Blomquist, J.-L. Brenguier, C.S. Bretherton, F. Burnet, T. Campos, S. Chai, I. Faloona, D. Friesen, S. Haimov, K. Laursen, D.K. Lilly, S.M. Loehrer, S.P. Malinowski, B. Morley, M.D. Petters, D.C. Rogers, L. Russell, V. Savic-Jovcic, J.R. Snider, D. Straub, M.J. Szumowski, H. Takagi, D.C. Thornton, M. Tschudi, C. Twohy, M. Wetzel, and M.C. van Zanten (2003). Dynamics and chemistry of marine stratocumulus: DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579–593.

    Article  Google Scholar 

  • Sundqvist, H. (1978). A parameterization scheme for non-convective condensation including prediction of cloud water content. Q. J. Roy. Meteor. Soc., 104, 677–690.

    Article  Google Scholar 

  • Sundqvist, H., E. Berge, and J. E. Kristjansson (1989). Condensation and cloud parameterization studies with a mesoscale Numerical Weather Prediction model. Mon. Wea. Rev., 117, 1641–1657.

    Article  Google Scholar 

  • Takara, E.E. and R.G. Ellingson (2000). Broken cloud field longwave scattering effects. J. Atmos. Sci., 57, 1298–1310.

    Article  Google Scholar 

  • Twomey, S. (1987). Iterative nonlinear inversion methods for tomographic problems. J. Atmos. Sci., 44, 3544–3551.

    Article  Google Scholar 

  • Vonder Haar, T. and V. Suomi (1971). Measurements of Earth’s radiation budget from satellites for a five-year period. J. Atmos. Sci., 28, 305–314.

    Article  Google Scholar 

  • Warner, J., J. Drake, and P. Krehbiel (1985). Determination of cloud liquid water distribution by inversion of radiometric data. J. Atmos. Oceanic Technol., 2, 293–303.

    Article  Google Scholar 

  • Warner, J., J. Drake, and J. Snider (1986). Liquid water distribution obtained from coplanar scanning radiometers. J. Atmos. Oceanic Technol., 3, 542–546.

    Article  Google Scholar 

  • Weinman, J.A. and P.N. Swartztrauber (1968). Albedo of a striated medium of isotropically scattering particles. J. Atmos. Sci., 34, 642–650.

    Google Scholar 

  • Wielicki, B.A., R.D. Cess, M.D. King, D.A. Randall, and E.F. Harrison (1995). Mission to Planet Earth-Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76, 2125–2153.

    Article  Google Scholar 

  • Winker, D., R. Couch, and M.P. McCormick (1996). An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE, 84, 164–180.

    Article  Google Scholar 

  • Wiscombe, W.J. (1975). Solar radiation calculations for Arctic summer stratus conditions. In Climate of the Arctic. G. Weller and S. Bowling (eds.). University of Alaska Press, Fairbanks (AK).

    Google Scholar 

  • Wiscombe, W.J. (1983). Atmospheric radiation: 1975–1983. Rev. Geophys. Space Phys., 21, 997–1021.

    Google Scholar 

  • Wiscombe, W.J. and V. Ramanathan (1985). The role of radiation and other renascent subfields in atmospheric science. Bull. Amer. Meteor. Soc., 66, 1278–1287.

    Article  Google Scholar 

  • Wiscombe, W.J. and R. Welch (1986). Reply. J. Atmos. Sci., 43, 401–407.

    Article  Google Scholar 

  • Wiscombe, W.J., R. Welch, and W. Hall (1984). The effect of very large drops on cloud absorption I. Parcel models. J. Atmos. Sci., 41, 1336–1355.

    Article  Google Scholar 

  • Yodh, A. and B. Chance (1995). Spectroscopy and imaging with diffusing light. Phys. Today, 48, 34–40.

    Google Scholar 

  • Zmarzly, P.M. and R.P. Lawson (2000). An optical extinctometer for cloud radiation measurements and planetary exploration. Technical Report Fulfillment of Contract NAS5-98032, NASA GSFC.

    Google Scholar 

Suggested Further Reading

  • Davies, R. (1978). The effect of finite cloud geometry on the 3D transfer of solar irradiance in clouds. J. Atmos. Sci., 35, 1712–1725.

    Article  Google Scholar 

  • Hasler, A. (1981). Stereoscopic observations from geosynchronous satellites. Bull. Amer. Meteor. Soc., 62, 194–212.

    Article  Google Scholar 

  • Kummerow, C. and J.A. Weinman (1988). Determining microwave brightness temperatures from precipitating horizontally finite and vertically structured clouds. J. Geophys. Res., 93, 3720–3728.

    Google Scholar 

  • Li, Z., M. Cribb and A. Trishchenko (2002). Impact of surface inhomogeneity on solar radiative transfer under overcast conditions. J. Geophys. Res., 107(D16), 10.1029/2001JD00976.

    Google Scholar 

  • Oreskes, N., K. Schrader-Frechette and K. Belitz (1994). Verification, validation and confirmation of numerical models in the Earth sciences. Science, 263, 641–646 (and Letters to Science, 264, 329–331).

    Google Scholar 

  • Pinnick, R., S. Jennings, P. Chylek, C. Ham and W. Grandy (1983). Backscatter and extinction in water clouds. J. Geophys. Res., 88, 6787–6796.

    Article  Google Scholar 

  • Plank, V. (1969). The size distribution of cumulus clouds in representative Florida populations. J. Appl. Meteor., 8, 46–67.

    Article  Google Scholar 

  • Twomey, S. (1976): The effects of fluctuations in liquid water content on the evolution of large drops by coalescence. J. Atmos. Sci., 33, 720–723.

    Article  Google Scholar 

  • Venema, V., S. Crewell and C. Simmer (2003): Surrogate cloud fields with measured cloud properties. In Proceedings of Inter. Symp. on Tropos. Profiling, 14–20 September 2003, Leipzig (Germany), 303–305.

    Google Scholar 

  • Weckwerth, T., D.B. Parsons, S.E. Koch, J.A. Moore, M.A. Le Mone, B.B. Demoz, C. Flamant, B. Geerts, J. Wang and W.F. Feltz (2004): An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253–277.

    Article  Google Scholar 

  • Welch, R. and W. Zdunkowski, 1981: The radiative characteristics of noninteracting cumulus cloud fields, Part I: Parameterization for finite clouds. Contrib. Atmos. Phys., 54, 258–272.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiscombe, W. (2005). Scales, Tools and Reminiscences. In: Marshak, A., Davis, A. (eds) 3D Radiative Transfer in Cloudy Atmospheres. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28519-9_1

Download citation

Publish with us

Policies and ethics