Skip to main content

What Can Lattice QCD Theorists Learn from NMR Spectroscopists?

  • Conference paper
QCD and Numerical Analysis III

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 47))

Summary

The Lattice QCD (LQCD) community has occasionally gone through periods of self-examination of its data analysis methods and compared them with methods used in other disciplines [22, 16, 18]. This process has shown that the techniques widely used elsewhere may also be useful in analyzing LQCD data. It seems that we are in such a period now with many groups trying what are generally called Bayesian methods such as Maximal Entropy (MEM) or constrained fitting [19, 15, 1, 7, 5, and many others]. In these proceedings we will attempt to apply this process to a comparison of data modeling techniques used in LQCD and NMR Spectroscopy to see if there are methods which may also be useful when applied to LQCD data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chris Allton, Danielle Blythe, and Jonathan Clowser. Spectral functions, maximum entropy method and unconventional methods in lattice field theory. Nucl.Phys. Proc. Suppl., 109A:192–196, 2002.

    Google Scholar 

  2. Niels H. Abel. Beweis der Unmöglichkeit, algebraische Gleichungen von höheren Graden als dem vierten allgemein aufzulösen. J. reine angew. Math., 1:65,1826. See http://mathworld.wolfram.com/AbelsImpossibilityTheorem.html for more references.

    MATH  Google Scholar 

  3. F. L. Bauer. Optimally scaled matrices. Numer. Math., 5:73–87, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  4. John Bolstad. varpro.f. Available at: http://www.netlib.org/opt/index.html, January1977.

    Google Scholar 

  5. T. Draper et al. An algorithm for obtaining reliable priors for constrained-curve fits. 2003.

    Google Scholar 

  6. Carl H. Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211–218, 1936.

    Google Scholar 

  7. H. Rudolf Fiebig. Spectral density analysis of time correlation functions in lattice QCD using the maximum entropy method. Phys. Rev., D65:094512, 2002.

    Google Scholar 

  8. Carl F. Gauss. Theoria combinationis observationum erroribus minimis obnoxiae. Comment. Soc. Reg. Sci. Gotten. Recent., 5:33, 1823.

    Google Scholar 

  9. Gene H. Golub. Some modified matrix eigenvalue problems. SIAM Rev., 15:318–334, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  10. Gene H. Golub and Victor Pereyra. The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal., 10:413–432, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gene H. Golub and Christian H. Reinsch. Singular value decomposition and least squares solutions. Numer. Math., 14:403–420, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  12. Gene H. Golub and Charles F. Van Loan. An analysis of the total least squares problem. SIAM J. Numer. Anal., 17:883–893, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Y. Kung, K. S. Arun, and D. V. Bhaskar Rao. State-space and singular value decomposition-based approximation methods for the harmonic retrieval problem. J. Opt. Soc. Am., 73:1799–1811, 1983.

    Article  Google Scholar 

  14. Ramdas Kumeresan and Donald W. Tufts. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Trans. Acoust. Speech Signal Proc., 30:833–840, 1982.

    Google Scholar 

  15. G. P. Lepage et al. Constrained curve fitting. Nucl. Phys. Proc. Suppl., 106:12–20, 2002.

    Article  MATH  Google Scholar 

  16. Chris Michael. Fitting correlated data. Phys. Rev., D49:2616–2619, 1994.

    Google Scholar 

  17. Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart.J. Math. Oxford Ser., 11:50–59, 1960.

    MATH  MathSciNet  Google Scholar 

  18. Chris Michael and A. McKerrell. Fitting correlated hadron mass spectrum data. Phys. Rev., D51: 3745–3750, 1995.

    Google Scholar 

  19. Y. Nakahara, M. Asakawa, and T. Hatsuda. Hadronic spectral functions in lattice QCD. Phys. Rev., D60:091503, 1999.

    Google Scholar 

  20. William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (UK) and New York, second edition, 1992.

    Google Scholar 

  21. C. F. Tirendi and J. F. Martin. Quantitative analysis of NMR spectra by linear prediction and total least squares. J. Magn. Reson., 85:162–169, 1989.

    Google Scholar 

  22. D. Toussaint. In T. DeGrand and D. Toussaint, editors, From Actions to Answers, page 121, Singapore, 1990. World Scientific. Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, USA, June 5–30, 1989.

    Google Scholar 

  23. Sabine Van Huffel. Available at: http://www.netlib.org/vanhuffel/, 1988.

    Google Scholar 

  24. Sabine Van Huffel. The generalized total least squares problem: formulation,algorithm and properties. In Gene H. Golub and P. Van Dooren, editors, Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, volume 70 of NATO ASI Series F: Computer and Systems Sciences, pages 651–660, Berlin, 1990. Springer-Verlag. Proceedings of NATO ASI, Leuven, Belgium, August 1988.

    Google Scholar 

  25. Sabine Van Huffel. Reliable and efficient techniques based on total least squares for computing consistent estimators in models with errors in the variables. In J. G. McWhirter, editor, Mathematics in Signal Processing II, pages 593–603, Oxford, 1990. Clarendon Press. Proceedings of IMA conference, December 1988.

    Google Scholar 

  26. Leentje Vanhamme. Advanced time-domain methods for nuclear magnetic resonance spectroscopy data analysis. PhD thesis, Katholieke Universiteit Leuven, Belgium, November 1999. ftp://ftp.esat.kuleuven.ac.be/pub/sista/vanhamme/reports/phd.ps.gz.

    Google Scholar 

  27. Sabine Van Huffel, H. Chen, C. Decanniere, and P. Van Hecke. Algorithm for time-domain NMR data fitting based on total least squares. J. Magn. Reson., Ser. A, 110:228–237, 1994.

    Google Scholar 

  28. Sabine Van Huffel and Joos Vandewalle. The Total Least Squares Problem: Computational Aspects and Analysis, volume 9 of Frontiers in Applied Mathematics. SIAM, Philadelphia, 1992.

    Google Scholar 

  29. Sabine Van Huffel and H. Zha. The restricted total least squares problem:formulation, algorithm and properties. SIAM J. Matrix Anal.Appl., 12:292–309, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  30. Eric W. Weisstein. Moore-Penrose matrix inverse. http://mathworld.wolfram. com/Moore-PenroseMatrixInverse.html, 2004. From MathWorld — A Wolfram Web Resource.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleming, G.T. (2005). What Can Lattice QCD Theorists Learn from NMR Spectroscopists?. In: Bori~i, A., Frommer, A., Joó, B., Kennedy, A., Pendleton, B. (eds) QCD and Numerical Analysis III. Lecture Notes in Computational Science and Engineering, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28504-0_14

Download citation

Publish with us

Policies and ethics