Skip to main content

A Finite Baryon Density Algorithm

  • Conference paper
QCD and Numerical Analysis III

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 47))

  • 631 Accesses

Summary

I will review the progress toward a finite baryon density algorithm in the canonical ensemble approach which entails particle number projection from the fermion determinant. These include an efficient Padé-Z2 stochastic estimator of the Tr log of the fermion matrix and a Noisy Monte Carlo update to accommodate unbiased estimate of the probability. Finally, I will propose a Hybrid Noisy Monte Carlo algorithm to reduce the large fluctuation in the estimated Tr log due to the gauge field which should improve the acceptance rate. Other application such as treating u and d as two separate flavors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review, see for example, S. D. Katz, hep-lat/0310051.

    Google Scholar 

  2. I. M. Barbour, S. E. Morrison, E. G. Klepfish, J. B. Kogut, and M.-P. Lombardo, Nucl. Phys. (Proc. Suppl.) 60A, 220 (1998); I.M. Barbour, C.T.H. Davies, and Z. Sabeur, Phys. Lett. B215, 567 (1988).

    Google Scholar 

  3. M. Alford, Nucl. Phys. B (Proc. Suppl.) 73, 161 (1999).

    Article  MATH  Google Scholar 

  4. Z. Fodor and S.D. Katz, Phys. Lett .B534, 87 (2002); JHEP 0203, 014 (2002).

    Google Scholar 

  5. C. R. Allton et al., Phys. Rev. D66, 074507 (2002).

    Google Scholar 

  6. E. Dagotto, A. Moreo, R. Sugar, and D. Toussaint, Phys. Rev. B41, 811 (1990).

    Google Scholar 

  7. N. Weiss, Phys. Rev. D35, 2495 (1987); A. Hasenfratz and D. Toussaint, Nucl. Phys. B371, 539 (1992).

    Google Scholar 

  8. M. Alford, A. Kapustin, and F. Wilczek, Phys. Rev. D59, 054502 (2000).

    Google Scholar 

  9. P. deForcrand and O. Philipsen, Nucl. Phys. B642, 290 (2002); ibid, B673, 170 (2003).

    Google Scholar 

  10. M. D’Elia and M.-P. Lombardo, Phys. Rev. D67, 014505 (2003).

    Google Scholar 

  11. K.F. Liu, Int. Jour. Mod. Phys. B16, 2017 (2002).

    Google Scholar 

  12. M. Faber, O. Borisenko, S. Mashkevich, and G. Zinovjev, Nucl. Phys. B444, 563 (1995).

    Google Scholar 

  13. M. Faber, O. Borisenko, S. Mashkevich, and G. Zinovjev, Nucl. Phys. B (Proc. Suppl.) 42, 484 (1995).

    Article  Google Scholar 

  14. For reviews on the subject see for example C.W. Wong, Phys. Rep. 15C, 285 (1975); D.J.Rowe, Nuclear Collective Motion, Methuen (1970); P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer-Verlag (1980).

    Google Scholar 

  15. H.D. Zeh, Z. Phys. 188, 361 (1965).

    MathSciNet  Google Scholar 

  16. H. Rouhaninejad and J. Yoccoz, Nucl. Phys. 78, 353 (1966).

    MathSciNet  Google Scholar 

  17. R.E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London) A70, 381 (1957).

    MathSciNet  Google Scholar 

  18. L. Lin, K. F. Liu, and J. Sloan, Phys. Rev. D61, 074505 (2000), [heplat/ 9905033]

    Google Scholar 

  19. C. Thron, S. J. Dong, K. F. Liu, H. P. Ying, Phys. Rev. D57, 1642 (1998); K.F. Liu, Chin. J. Phys. 38, 605 (2000).

    Google Scholar 

  20. S. J. Dong and K. F. Liu, Phys. Lett. B 328, 130 (1994).

    Google Scholar 

  21. B. Joó, I. Horváth, and K.F. Liu, Phys. Rev. D67, 074505 (2003).

    Google Scholar 

  22. G. Bhanot, A. D. Kennedy, Phys. Lett. 157B, 70 (1985).

    Google Scholar 

  23. S. Bernardson, P. McCarty and C. Thron, Comp. Phys. Commun. 78, 256 (1994).

    Google Scholar 

  24. S.J. Dong, J.-F. Lagaë, and K.F. Liu, Phys. Rev. Lett. 75, 2096 (1995); S.J. Dong, J.-F. Lagaë, and K.F. Liu, Phys. Rev. D54, 5496 (1996); S.J. Dong, K.F. Liu, and A. G. Williams, Phys. Rev. D58, 074504 (1998).

    Article  Google Scholar 

  25. J.C. Sexton and D.H. Weingarten, Nucl. Phys. B(Proc. Suppl.) 42, 361 (1995).

    Google Scholar 

  26. M. Faber, private communication.

    Google Scholar 

  27. I. Horváth, A. Kennedy, and S. Sint, Nucl. Phys. B(Proc. Suppl.) 73, 834 (1999).

    Google Scholar 

  28. M. Clark and A. Kennedy, hep-lat/0309084.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, KF. (2005). A Finite Baryon Density Algorithm. In: Bori~i, A., Frommer, A., Joó, B., Kennedy, A., Pendleton, B. (eds) QCD and Numerical Analysis III. Lecture Notes in Computational Science and Engineering, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28504-0_10

Download citation

Publish with us

Policies and ethics