Skip to main content

Automatic Propagation of Uncertainties

  • Conference paper
  • First Online:
Automatic Differentiation: Applications, Theory, and Implementations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 50))

Abstract

Motivated by problems in metrology, we consider a numerical evaluation program y = f(x) as a model for a measurement process. We use a probability density function to represent the uncertainties in the inputs x and examine some of the consequences of using Automatic Differentiation to propagate these uncertainties to the outputs y.We show how to use a combination of Taylor series propagation and interval partitioning to obtain coverage (confidence) intervals and ellipsoids based on unbiased estimators for means and covariances of the outputs, even where f is sharply non-linear, and even when the level of probability required makes the use of Monte Carlo techniques computationally problematic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Christianson, B., Cox, M. (2006). Automatic Propagation of Uncertainties. In: Bücker, M., Corliss, G., Naumann, U., Hovland, P., Norris, B. (eds) Automatic Differentiation: Applications, Theory, and Implementations. Lecture Notes in Computational Science and Engineering, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28438-9_4

Download citation

Publish with us

Policies and ethics