Skip to main content

Lateral Membrane Structure and Lipid-Protein Interactions

  • Chapter
Protein-Lipid Interactions

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 9))

  • 667 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ait Slimane T, Hoekstra D (2002) Sphingolipid trafficking and protein sorting in epithelial cells. FEBS Lett 529:54–9

    Article  Google Scholar 

  • Bagatolli LA, Gratton E (2000a) A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Biophys. J 79:434–47

    Article  Google Scholar 

  • Bagatolli LA, Gratton E (2000b) Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78:290–305

    Article  Google Scholar 

  • Barlic A, Gutierrez-Aguirre I, Caaveiro JM, Cruz A, Ruiz-Arguello MB, Perez-Gil J, Gonzalez-Manas JM (2004) Lipid phase coexistence favors membrane insertion of equinatoxin-II, a pore-forming toxin from Actinia equina. J Biol Chem 279:34209–16

    Article  Google Scholar 

  • Bernardino de la Serna J, Perez-Gil J, Simonsen AC, Bagatolli LA (2004) Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J Biol Chem 279:40715–22

    Article  Google Scholar 

  • Binder WH, Barragan V, Menger FM (2003) Domains and rafts in lipid membranes. Angew Chem Int Ed Engl 42:5802–27

    Article  Google Scholar 

  • Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    Article  Google Scholar 

  • Brockman H (1999) Lipid monolayers: why use half a membrane to characterize protein-membrane interactions? Curr Opin Struct Biol 9:438–43

    Article  Google Scholar 

  • Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, Barr VA, Samelson LE (2002) T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol 158:1263–75

    Article  Google Scholar 

  • Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5

    Article  Google Scholar 

  • Chazal N, Gerlier D (2003) Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 67:226–37, table of contents

    Article  Google Scholar 

  • Cherukuri A, Dykstra M, Pierce SK (2001) Floating the raft hypothesis: lipid rafts play a role in immune cell activation. Immunity 14:657–60

    Article  Google Scholar 

  • Coffin WF, 3rd, Geiger TR, Martin JM (2003) Transmembrane domains 1 and 2 of the latent membrane protein 1 of Epstein-Barr virus contain a lipid raft targeting signal and play a critical role in cytostasis. J Virol 77:3749–58

    Article  Google Scholar 

  • Collado MI, Goni FM, Alonso A, Marsh D (2005) Domain formation in sphingomyelin/cholesterol mixed membranes studied by spin-label electron spin resonance spectroscopy. Biochemistry 44:4911–8

    Article  Google Scholar 

  • Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ (2003) Exclusively targeting betasecretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 100:11735–40

    Article  ADS  Google Scholar 

  • Cruz A, Vazquez L, Velez M, Perez-Gil J (2004) Effect of pulmonary surfactant protein SP-B on the micro-and nanostructure of phospholipid films. Biophys J 86:308–20

    Article  Google Scholar 

  • de Almeida RF, Loura LM, Fedorov A, Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346:1109–20

    Article  Google Scholar 

  • Deamer DW (1986) Role of amphiphilic compounds in the evolution of membrane structure on the early earth. Orig Life Evol Biosph 17:3–25

    Article  ADS  Google Scholar 

  • Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–28

    Article  Google Scholar 

  • Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–83

    Article  Google Scholar 

  • Epand RM, Maekawa S, Yip CM, Epand RF (2001) Protein-induced formation of cholesterol-rich domains. Biochemistry 40:10514–21

    Article  Google Scholar 

  • Epand RM, Sayer BG, Epand RF (2003) Peptide-induced formation of cholesterol-rich domains. Biochemistry 42:14677–89

    Article  Google Scholar 

  • Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100:15554–9

    Article  ADS  Google Scholar 

  • Gousset K, Wolkers WF, Tsvetkova NM, Oliver AE, Field CL, Walker NJ, Crowe JH, Tablin F (2002) Evidence for a physiological role for membrane rafts in human platelets. J Cell Physiol 190:117–28

    Article  Google Scholar 

  • Grabitz P, Ivanova VP, Heimburg T (2002) Relaxation kinetics of lipid membranes and its relation to the heat capacity. Biophys J 82:299–309

    Article  Google Scholar 

  • Harder T (2003) Formation of functional cell membrane domains: the interplay of lipid-and protein-mediated interactions. Phil Trans R Soc Lond B Biol Sci 358:863–8

    Article  Google Scholar 

  • Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5:247–54

    Article  Google Scholar 

  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–81

    Article  ADS  Google Scholar 

  • Hogg N, Henderson R, Leitinger B, McDowall A, Porter J, Stanley P (2002) Mechanisms contributing to the activity of integrins on leukocytes. Immunol Rev 186:164–71

    Article  Google Scholar 

  • Kahya N, Scherfeld D, Bacia K, Schwille P (2004) Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J Struct Biol 147:77–89

    Article  Google Scholar 

  • Khan TK, Yang B, Thompson NL, Maekawa S, Epand RM, Jacobson K (2003) Binding of NAP-22, a calmodulin-binding neuronal protein, to raft-like domains in model membranes. Biochemistry 42:4780–6

    Article  Google Scholar 

  • Kropshofer H, Spindeldreher S, Rohn TA, Platania N, Grygar C, Daniel N, Wolpl A, Langen H, Horejsi V, Vogt AB (2002) Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes. Nat Immunol 3:61–8

    Article  Google Scholar 

  • Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5:213–30

    Article  Google Scholar 

  • Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–40

    Article  Google Scholar 

  • Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta 1286:183–223

    Google Scholar 

  • Mbamala EC, Ben-Shaul A, May S (2005) Domain formation induced by the adsorption of charged proteins on mixed lipid membranes. Biophys J 88:1702–14

    Article  Google Scholar 

  • McConnell H (2005) Complexes in ternary cholesterol-phospholipid mixtures. Biophys J 88:L23–5

    Article  Google Scholar 

  • McConnell HM, Vrljic M (2003) Liquid-liquid immiscibility in membranes. Annu Rev Biophys Biomol Struct 32:469–92

    Article  Google Scholar 

  • Mohwald H, Dietrich A, Bohm C, Brezesinski G, Thoma M (1995) Domain formation in monolayers. Mol Membr Biol 12:29–38

    Article  Google Scholar 

  • Mukherjee A, Arnaud L, Cooper JA (2003) Lipid-dependent recruitment of neuronal Src to lipid rafts in the brain. J Biol Chem 278:40806–14

    Article  Google Scholar 

  • Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673–7

    Article  Google Scholar 

  • Nag K, Keough KM (1993) Epifluorescence microscopic studies of monolayers containing mixtures of dioleoyl-and dipalmitoylphosphatidylcholines. Biophys J 65:1019–26

    Article  Google Scholar 

  • Nag K, Pao JS, Harbottle RR, Possmayer F, Petersen NO, Bagatolli LA (2002) Segregation of saturated chain lipids in pulmonary surfactant films and bilayers. Biophys J 82:2041–51

    Article  Google Scholar 

  • Nayak DP, Hui EK, Barman S (2004) Assembly and budding of influenza virus. Virus Res 106:147–65

    Article  Google Scholar 

  • Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Luers G, Stuermer CA, Herzog V, Tikkanen R (2004) Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 378:509–18

    Article  Google Scholar 

  • Nielsen LK, Bjornholm T, Mouritsen OG (2000) Fluctuations caught in the act. Nature 404:352

    Article  ADS  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  Google Scholar 

  • Pohorille A, Wilson MA (1995) Molecular dynamics studies of simple membrane-water interfaces: structure and functions in the beginnings of cellular life. Orig Life Evol Biosph 25:21–46

    Article  ADS  Google Scholar 

  • Poveda JA, Encinar JA, Fernandez AM, Mateo CR, Ferragut JA, Gonzalez-Ros JM (2002) Segregation of phosphatidic acid-rich domains in reconstituted acetylcholine receptor membranes. Biochemistry 41:12253–62

    Article  Google Scholar 

  • Ruano ML, Nag K, Worthman LA, Casals C, Perez-Gil J, Keough KM (1998) Differential partitioning of pulmonary surfactant protein SP-A into regions of monolayers of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol. Biophys J 74:1101–9

    Article  Google Scholar 

  • Russ C, Heimburg T, von Grunberg HH (2003) The effect of lipid demixing on the electrostatic interaction of planar membranes across a salt solution. Biophys J 84:3730–42

    Article  Google Scholar 

  • Saez-Cirion A, Nir S, Lorizate M, Agirre A, Cruz A, Perez-Gil J, Nieva JL (2002) Sphingomyelin and cholesterol promote HIV-1 gp41 pretransmembrane sequence surface aggregation and membrane restructuring. J Biol Chem 277:21776–85

    Article  Google Scholar 

  • Shimada Y, Maruya M, Iwashita S, Ohno-Iwashita Y (2002) The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur J Biochem 269:6195–203

    Article  Google Scholar 

  • Shogomori H, Brown DA (2003) Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol Chem 384:1259–63

    Article  Google Scholar 

  • Shogomori H, Hammond AT, Ostermeyer-Fay AG, Barr DJ, Feigenson GW, London E, Brown DA (2005) Palmitoylation and intracellular-domain interactions both contribute to raft targeting of linker for activation of T cells (LAT). J Biol Chem 280:18931–18942

    Article  Google Scholar 

  • Silvius JR (2003) Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Acta 1610:174–83

    Article  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–72

    Article  ADS  Google Scholar 

  • Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–95

    Article  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–31

    Article  ADS  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–90

    Article  ADS  Google Scholar 

  • Tablin F, Wolkers WF, Walker NJ, Oliver AE, Tsvetkova NM, Gousset K, Crowe LM, Crowe JH (2001) Membrane reorganization during chilling: implications for long-term stabilization of platelets. Cryobiology 43:114–23

    Article  Google Scholar 

  • Tillman TS, Cascio M (2003) Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 38:161–90

    Article  Google Scholar 

  • van den Brink-van der Laan E, Killian JA, de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275–88

    Article  Google Scholar 

  • Veatch SL, Keller SL (2002) Organization in lipid membranes containing cholesterol. Phys Rev Lett 89:268101

    Article  ADS  Google Scholar 

  • Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–83

    Article  Google Scholar 

  • Veiga MP, Arrondo JL, Goni FM, Alonso A, Marsh D (2001) Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Biochemistry 40:2614–22

    Article  Google Scholar 

  • White SH, Wimley WC (1998) Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta 1376:339–52

    Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–8

    Article  Google Scholar 

  • Zhang J, Pekosz A, Lamb RA (2000) Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol 74:4634–44

    Article  Google Scholar 

  • Zhang W, Trible RP, Samelson LE (1998) LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9:239–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pérez-Gil, J., Cruz, A., Bernardino de la Serna, J. (2006). Lateral Membrane Structure and Lipid-Protein Interactions. In: Mateo, C.R., Gómez, J., Villalaín, J., González-Ros, J.M. (eds) Protein-Lipid Interactions. Springer Series in Biophysics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28435-4_5

Download citation

Publish with us

Policies and ethics