Skip to main content

The Role of Proteins in the Formation of Domains in Membranes

  • Chapter

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 9))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeytunga DTU, Glick JJ, Gibson NJ, Oland LA, Somogyi A, Wysocki VH, Polt R (2004) Presence of unsaturated sphingomyelins and changes in their composition during the life cycle of the moth Manduca sexta. J Lipid Res 45:1221–1231

    Article  Google Scholar 

  • Aloia, RC, Tian H, Jensen FC (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA 90:5181–5185

    Article  ADS  Google Scholar 

  • Anderson, RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  Google Scholar 

  • Antes P, Schwarzmann G, Sandhoff K (1992) Detection of protein mediated glycosphingolipid clustering by the use of resonance energy transfer between fluorescent labelled lipids A method established by applying the system ganglioside GM1 and cholera toxin B subunit. Chem Phys Lipids 62:269–280

    Article  Google Scholar 

  • Arbuzova A, Wang L, Wang J, Hangyas-Mihalyne G, Murray D, Honig B, McLaughlin S (2000) Membrane binding of peptides containing both basic and aromatic residues Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. Biochemistry 39:10330–10339

    Article  Google Scholar 

  • Bacia K, Scherfeld D, Kahya N, Schwille P (2004) Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys J 87:1034–1043

    Article  Google Scholar 

  • Brown DA and London E (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  Google Scholar 

  • Brzustowicz MR, Cherezov V, Caffrey M, Stillwell W, Wassall SR (2002a) Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation. Biophys J 82:285–298

    Article  Google Scholar 

  • Brzustowicz MR, Cherezov V, Zerouga M, Caffrey M, Stillwell W, Wassall SR (2002b) Controlling membrane cholesterol content a role for polyunsaturated (docosahexaenoate) phospholipids. Biochemistry 41:12509–12519

    Article  Google Scholar 

  • Caroni P (2001) New EMBO members’ review: actin cytoskeleton regulation through modulation of PI(4, 5)P(2) rafts. EMBO J 20:4332–4336

    Article  Google Scholar 

  • Cristian L, Lear JD, DeGrado WF (2003) Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers. Proc Natl Acad Sci USA 100:14772–14777

    Article  ADS  Google Scholar 

  • de Almeida RF, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85:2406–2416

    Article  Google Scholar 

  • Denisov G, Wanaski S, Luan P, Glaser M, McLaughlin S (1998) Binding of basic peptides to membranes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4, 5-bisphosphate: an electrostatic model and experimental results. Biophys J 74:731–744

    Article  Google Scholar 

  • Dietzen DJ, Hastings WR, Lublin DM (1995) Caveolin is palmitoylated on multiple cysteine residues Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem 270:6838–6842

    Article  Google Scholar 

  • Ellena JF, Moulthrop J, Wu J, Rauch M, Jaysinghne S, Castle JD, Cafiso DS (2004) Membrane position of a basic aromatic peptide that sequesters phosphatidylinositol 4, 5 bisphosphate determined by site-directed spin labeling and high-resolution NMR. Biophys J 87:3221–3233

    Article  Google Scholar 

  • Epand RF, Sayer BG, Epand RM (2005a) The tryptophan-rich region of HIV gp41 and the promotion of cholesterol-rich domains. Biochemistry 44:5525–5531

    Article  Google Scholar 

  • Epand RM, Rychnovsky S, Belani J, Epand RF (2005b) Role of chirality in peptide-induced formation of cholesterol-rich domains. Biochemical J 390:541–548

    Article  Google Scholar 

  • Epand RM, Epand RF (2004) Non-raft forming sphingomyelin-cholesterol mixtures. Chem Phys Lipids 132:37–46

    Article  Google Scholar 

  • Epand RM, Maekawa S, Yip CM, Epand RF (2001) Protein-induced formation of cholesterol-rich domains. Biochemistry 40:10514–10521

    Article  Google Scholar 

  • Epand RM, Sayer BG, Epand RF (2003) Peptide-induced formation of cholesterol-rich domains. Biochemistry 42:14677–14689

    Article  Google Scholar 

  • Epand RM, Sayer BG, Epand RF (2005c) Caveolin scaffolding region and cholesterol-rich domains in membranes. J Mol Biol 345:339–350

    Article  Google Scholar 

  • Epand RM, Vuong P, Yip CM, Maekawa S, Epand RF (2004) Cholesterol-dependent partitioning of Ptdlns(4,5)P-2 into membrane domains by the N-terminal fragment of NAP-22 (neuronal axonal myristoylated membrane protein of 22 kDa). Biochemical Journal 379:527–532

    Article  Google Scholar 

  • Esser MT, Graham DR, Coren LV, Trubey CM, Bess JW, Jr, Arthur LO, Ott DE, Lifson JD (2001) Differential incorporation of CD45, CD80 (B7-1), CD86 (B7-2), major histocompatibility complex class I and II molecules into human immunodeficiency virus type 1 virions and microvesicles: implications for viral pathogenesis and immune regulation. J Virol 75:6173–6182

    Article  Google Scholar 

  • Gambhir A, Hangyas-Mihalyne G, Zaitseva I, Cafiso DS, Wang J, Murray D, Pentyala SN, Smith SO, McLaughlin S (2004) Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys J 86:2188–2207

    Article  Google Scholar 

  • Graham DR, Chertova E, Hilburn JM, Arthur LO, Hildreth JE (2003) Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with beta-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. J Virol 77:8237–8248

    Article  Google Scholar 

  • Huang J and Feigenson GW (1993) Monte Carlo simulation of lipid mixtures: finding phase separation. Biophys J 65:1788–1794

    Article  Google Scholar 

  • Huang J, Swanson JE, Dibble AR, Hinderliter AK, Feigenson GW (1993) Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase. Biophys J 64:413–425

    Article  Google Scholar 

  • Hurley JH and Meyer T (2001) Subcellular targeting by membrane lipids. Curr Opin Cell Biol 13:146–152

    Article  Google Scholar 

  • Ishitsuka R, Yamaji-Hasegawa A, Makino A, Hirabayashi Y, Kobayashi T (2004) A lipid-specific toxin reveals heterogeneity of sphingomyelin-containing membranes. Biophys J 86:296–307

    Article  Google Scholar 

  • Janmey PA and Stossel TP 1987 Modulation of gelsolin function by phosphatidylinositol 4, 5-bisphosphate. Nature 325:362–364

    Article  ADS  Google Scholar 

  • Karatekin E, Sandre O, Guitouni H, Borghi N, Puech PH, Brochard-Wyart F (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84:1734–1749

    Article  Google Scholar 

  • Kenworthy AK, Petranova N, Edidin M (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 11:1645–1655

    Google Scholar 

  • Khan TK, Yang B, Thompson NL, Maekawa S, Epand RM, Jacobson K (2003) Binding of NAP-22, a calmodulin-binding neuronal protein, to raft-like domains in model membranes. Biochemistry 42:4780–4786

    Article  Google Scholar 

  • Klopfenstein DR, Tomishige M, Stuurman N, Vale RD (2002) Role of phosphatidylinositol(4, 5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109:347–358

    Article  Google Scholar 

  • Lalitha S, Kumar AS, Stine KJ, Covey DF (2001a) Chirality in membranes: first evidence that enantioselective interactions between cholesterol and cell membrane lipids can be a determinant of membrane physical properties. J Supramol Chem 1:53–61

    Article  Google Scholar 

  • Lalitha S, Kumar AS, Stine KJ, Covey DF (2001b) Enantiospecificity of sterol-lipid interactions: first evidence that the absolute configuration of cholesterol affects the physical properties of cholesterol-sphingomyelin membranes. Chem Commun 1192–1193

    Google Scholar 

  • Lanne B, Schierbeck B, Angstrom J (1999) Binding of cholera toxin B-subunits to derivatives of the natural ganglioside receptor, GM1. J Biochem (Tokyo) 126:226–234

    Google Scholar 

  • Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P (2000) GAP43, MARCKS, and CAP23 modulate PI(4, 5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 149:1455–1472

    Article  Google Scholar 

  • Li H, Papadopoulos V (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139:4991–4997

    Article  Google Scholar 

  • Li H, Yao Z, Degenhardt B, Teper G, Papadopoulos V (2001) Cholesterol binding at the cholesterol recognition/ interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc Natl Acad Sci USA 98:1267–1272

    Article  ADS  Google Scholar 

  • Liu Y, Casey L, Pike LJ (1998) Compartmentalization of phosphatidylinositol 4,5-bisphosphate in low-density membrane domains in the absence of caveolin. Biochem Biophys Res Commun 245:684–690

    Article  Google Scholar 

  • Maekawa S, Sato C, Kitajima K, Funatsu N, Kumanogoh H, Sokawa Y (1999) Cholesterol-dependent localization of NAP-22 on a neuronal membrane microdomain (raft). J Biol Chem 274:21369–21374

    Article  Google Scholar 

  • Mattjus P, Slotte JP (1996) Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids? Chem Phys Lipids 81:69–80

    Article  Google Scholar 

  • McIntosh TJ (2004) The (2004) Biophysical Society — Avanti Award in Lipids address: roles of bilayer structure and elastic properties in peptide localization in membranes. Chem Phys Lipids 130:83–98

    Article  Google Scholar 

  • McIntosh TJ, Vidal A, Simon SA (2003) Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. Biophys J 85:1656–1666

    Article  Google Scholar 

  • McLaughlin S, Wang J, Gambhir A, Murray D (2002) PIP(2) and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175

    Article  Google Scholar 

  • Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA (1999) Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts Many raft proteins are acylated, while few are prenylated. J Biol Chem 274:3910–3917

    Article  Google Scholar 

  • Metso AJ, Mattila JP, Kinnunen PK (2004) Characterization of the main transition of dinervonoylphosphocholine liposomes by fluorescence spectroscopy. Biochim Biophys Acta 1663:222–231

    Article  Google Scholar 

  • Milhiet PE, Giocondi MC, Le Grimellec C (2002) Cholesterol is not crucial for the existence of microdomains in kidney brush-border membrane models. J Biol Chem 277:875–878

    Article  Google Scholar 

  • Misra S, Miller GJ, Hurley JH (2001) Recognizing phosphatidylinositol 3-phosphate. Cell 107:559–562

    Article  Google Scholar 

  • Mitchell JS, Kanca O, McIntyre BW (2002) Lipid microdomain clustering induces a redistribution of antigen recognition and adhesion molecules on human T lymphocytes. J Immunol 168:2737–2744

    Google Scholar 

  • Morandat S, Bortolato M, Roux B (2002) Cholesterol-dependent insertion of glycosylphosphatidylinositol-anchored enzyme. Biochim Biophys Acta 1564:473–478

    Article  Google Scholar 

  • Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    Article  Google Scholar 

  • Nagy P, Vereb G, Sebestyen Z, Horvath G, Lockett SJ, Damjanovich S, Park JW, Jovin TM, Szollosi J (2002) Lipid rafts and the local density of ErbB proteins influence the biological role of homo-and heteroassociations of ErbB2. J Cell Sci 115:4251–4262

    Article  Google Scholar 

  • Nguyen DH, Hildreth JE (2000) Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 74:3264–3272

    Article  Google Scholar 

  • Parmryd I, Adler J, Patel R, Magee AI (2003) Imaging metabolism of phosphatidylinositol 4,5-bisphosphate in T-cell GM1-enriched domains containing Ras proteins. Exp Cell Res 285:27–38

    Article  Google Scholar 

  • Pike LJ, Casey L (1996) Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J Biol Chem 271:26453–26456

    Article  Google Scholar 

  • Ramachandran R, Heuck AP, Tweten RK, Johnson AE (2002) Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat Struct Biol 9:823–827

    Google Scholar 

  • Ren J, Lew S, Wang Z, London E (1997) Transmembrane orientation of hydrophobic alphahelices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry 36:10213–10220

    Article  Google Scholar 

  • Resh MD (2004) Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem 37:217–232

    Google Scholar 

  • Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL (2000) Phosphatidylinositol 4,5-bisphosphate induces actinbased movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 10:311–320

    Article  Google Scholar 

  • Saez-Cirion A, Arrondo JL, Gomara MJ, Lorizate M, Iloro I, Melikyan G, Nieva JL (2003) Structural and functional roles of HIV-1 gp41 pretransmembrane sequence segmentation. Biophys J 85:3769–3780

    Article  Google Scholar 

  • Saez-Cirion A, Nir S, Lorizate M, Agirre A, Cruz A, Perez-Gil J, Nieva JL (2002) Sphingomyelin and cholesterol promote HIV-1 gp41 pretransmembrane sequence surface aggregation and membrane restructuring. J Biol Chem 277:21776–21785

    Article  Google Scholar 

  • Sakurai N, Kaneko J, Kamio Y, Tomita T (2004) Cloning, expression, and pore-forming properties of mature and precursor forms of pleurotolysin, a sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus. Biochim Biophys Acta 1679:65–73

    Google Scholar 

  • Salzwedel K, West JT, Hunter E (1999) A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J Virol 73:2469–2480

    Google Scholar 

  • Schlegel A, Schwab RB, Scherer PE, Lisanti MP (1999) A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1 The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. J Biol Chem 274:22660–22667

    Article  Google Scholar 

  • Sepcic K, Berne S, Rebolj K, Batista UK, Plemenitas A, Sentjurc M, Macek P (2004) Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains. FEBS Lett 575:81–85

    Article  Google Scholar 

  • Shakor ABA, Czurylo EA, Sobota A (2003) Lysenin, a unique sphingomyelin-binding protein. FEBS Lett 542:1–6

    Article  Google Scholar 

  • Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  Google Scholar 

  • Sharom FJ, Lehto MT (2002) Glycosylphosphatidylinositol-anchored proteins: structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem Cell Biol 80:535–549

    Article  Google Scholar 

  • Shimada Y, Maruya M, Iwashita S, Ohno-Iwashita Y (2002) The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur J Biochem 269:6195–6203

    Article  Google Scholar 

  • Shnaper S, Sackett K, Gallo SA, Blumenthal R, Shai Y (2004) The C-and the N-terminal regions of glycoprotein 41 ectodomain fuse membranes enriched and not enriched with cholesterol, respectively. J Biol Chem 279:18526–18534

    Article  Google Scholar 

  • Terashita A, Funatsu N, Umeda M, Shimada Y, Ohno-Iwashita Y, Epand RM, Maekawa S (2002) Lipid binding activity of a neuron-specific protein NAP-22 studied in vivo and in vitro. J Neurosci Res 70:172–179

    Article  Google Scholar 

  • Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, Hashimoto Y (2004) Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem 279:26975–26982

    Article  Google Scholar 

  • Veatch SL, Keller SL (2002) Organization in lipid membranes containing cholesterol. Phys Rev Lett 89:268101

    Article  ADS  Google Scholar 

  • Veatch SL, Keller SL (2003) A closer look at the canonical ‘raft mixture’ in model membrane studies. Biophys J 84:725–726

    Article  Google Scholar 

  • Veatch SL, Polozov IV, Gawrisch K, Keller SL (2004) Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys J 86:2910–2922

    Article  Google Scholar 

  • Viard M, Parolini I, Rawat SS, Fecchi K, Sargiacomo M, Puri A, Blumenthal R (2004) The role of glycosphingolipids in HIV signaling, entry and pathogenesis. Glycoconj J 20:213–222

    Article  Google Scholar 

  • Viard M, Parolini I, Sargiacomo M, Fecchi K, Ramoni C, Ablan S, Ruscetti FW, Wang JM, Blumenthal R (2002) Role of cholesterol in human immunodeficiency virus type 1 envelope protein-mediated fusion with host cells. J Virol 76:11584–11595

    Article  Google Scholar 

  • Vincent N, Genin C, Malvoisin E (2002) Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups. Biochim Biophys Acta 1567:157–164

    Article  Google Scholar 

  • Waarts BL, Bittman R, Wilschut J (2002) Sphingolipid and cholesterol dependence of alphavirus membrane fusion Lack of correlation with lipid raft formation in target liposomes. J Biol Chem 277:38141–38147

    Article  Google Scholar 

  • Waheed AA, Shimada Y, Heijnen HF, Nakamura M, Inomata M, Hayashi M, Iwashita S, Slot JW, Ohno-Iwashita Y (2001) Selective binding of perfringolysin O derivative to cholesterolrich membrane microdomains (rafts). Proc Natl Acad Sci USA 98:4926–4931

    Article  ADS  Google Scholar 

  • Wanaski SP, Ng BK, Glaser M (2003) Caveolin scaffolding region and the membrane binding region of SRC form lateral membrane domains. Biochemistry 42:42–56

    Article  Google Scholar 

  • Wang J, Gunning W, Kelley KM, Ratnam M (2002) Evidence for segregation of heterologous GPI-anchored proteins into separate lipid rafts within the plasma membrane. J Membr Biol 189:35–43

    Article  Google Scholar 

  • Widmer F, Caroni P (1990) Identification, localization, and primary structure of CAP-23, a particle-bound cytosolic protein of early development. J Cell Biol 111:3035–3047

    Article  Google Scholar 

  • Woodman SE, Schlegel A, Cohen AW, Lisanti MP (2002) Mutational analysis identifies a short atypical membrane attachment sequence (KYWFYR) within caveolin-1. Biochemistry 41:3790–3795

    Article  Google Scholar 

  • Yamaji-Hasegawa A, Makino A, Baba T, Senoh Y, Kimura-Suda H, Sato SB, Terada N, Ohno S, Kiyokawa E, Umeda M, Kobayashi T (2003) Oligomerization and pore formation of a sphingomyelin-specific toxin, lysenin. J Biol Chem 278:22762–22770

    Article  Google Scholar 

  • Zhelev DV, Needham D (1993) Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta 1147:89–104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Epand, R.M. (2006). The Role of Proteins in the Formation of Domains in Membranes. In: Mateo, C.R., Gómez, J., Villalaín, J., González-Ros, J.M. (eds) Protein-Lipid Interactions. Springer Series in Biophysics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28435-4_4

Download citation

Publish with us

Policies and ethics