Skip to main content

Ecological Applications of Evolutionary Computation

  • Chapter
Ecological Informatics

5.5 Conclusion

The previous sections have described some of the basic applications of evolutionary computation techniques to various aspects of ecological modelling. Although there are many areas that have not been given adequate attention, it is clear that the use of difference and differential equations, the modelling of cooperation and community structure, the use of space and spatial behavior and the construction of hierarchical organization are areas where evolutionary computation techniques match well with ecological modelling. Models from large-scale behavior of communities, through to the way in which genetic material evolves in a species, can be studied using these types of models. The future is extremely positive for these evolutionary techniques to support and extend the current understanding of ecological processes and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 289.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adami C (1998) Introduction to Artificial Life. New York, Springer-Verlag

    Google Scholar 

  • Angeline PJ, Pollack JB (1993) Competitive Environments Evolve Better Solutions for Complex Tasks. Proceedings of the 5th International Conference on Genetic Algorithms. S. Forrest, San Mateo, CA. Morgan Kaufmann: 264–270

    Google Scholar 

  • Ashlock D, Smucker M D (1996) Preferential partner selection in an evolutionary study of prisoner’s dilemma. Biosystems 37: 99–125

    Article  CAS  Google Scholar 

  • Bagley J (1967) The Behavior of Adaptive Systems Which Employ Genetic and Correlation Algorithms, Univ. Michigan, Ann Arbor

    Google Scholar 

  • Bak P (1996) How Nature Works: The Science of Self-Organized Criticality. New York, Springer-Verlag

    Google Scholar 

  • Barricelli NA (1954). Esempi Numerici di Processi di Evoluzione. Methodos: 45–68

    Google Scholar 

  • Bobbin J, Recknagel F (2001) Knowledge Discovery for Prediction and Explanation of Blue-Green Algal Dynamics in Lakes by Evolutionary Algorithms. Ecol. Modelling 146,1–3, 253–264

    Article  CAS  Google Scholar 

  • Bremermann H (1962) Optimization through Evolution and Recombination. Selforganizing Systems. M.C. Yovits, G. T. Jacobi and G. D. Goldstine. Washington DC, Spartan Books: 93–106

    Google Scholar 

  • Bremermann H, Rogson M (1966) Global Properties of Evolution Processes. Natural Automata and Useful Simulations. H. H. Pattee, E. Edlasck, L. Fein and A. Callahan. Washington DC, Spartan Books: 3–41

    Google Scholar 

  • Brewster J, Conrad M (1998) Evolve IV: A Metabolically-Based Artificial Ecosystem Model. In: Evolutionary Programming VII: 7th International Conference, EP98. V. W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben (eds.), Springer-Verlag, New York: 473–492

    Google Scholar 

  • Buchanan B, Shortliffe E Eds. (1984) Rule-Based Expert Systems, Addison-Wesley

    Google Scholar 

  • Carter RN, Prince SD (1981) Epidemic models used to explain biogeographical distribution limits. Nature 293: 644–645

    Article  Google Scholar 

  • Cliff D, Miller GF (1996) Co-evolution of Pursuit and Evasion: Simulation Methods and Results. From animals to animats 4. P. Maes, M. Mataric, J. Meyer, J. Pollack and S. Wilson. Cambridge, MA, MIT Press: 506–515

    Google Scholar 

  • Cohoon JP, Hegde SU (1987) Punctuated equilibria: A parallel genetic algorithm. Proceedings of the Second International Conference on Genetic Algorithms, Lawrence Erlbaum Associates

    Google Scholar 

  • Colasanti RL, Grime JP (1993) Resource dynamics and vegetation processes: a deterministic model using two dimensional cellular automata. Functional Ecology 7: 169–176

    Google Scholar 

  • Comins HN, Hassell MP (1992) The spatial dynamics of host-parasitoid systems. Journal of Animal Ecology 61: 735–748

    Google Scholar 

  • Conrad M, Pattee HH (1970) Evolution Experiments with an Artificial Ecosystem. J. Theor. Biol. 28: 393–409

    Article  CAS  Google Scholar 

  • Conrad M, Rizki M (1989) The artificial worlds approach to emergent evolution. Biosystems 23: 247–260

    Article  CAS  Google Scholar 

  • Corcoran AL, Sen S (1994) Using real-valued genetic algorithms to evolve rule sets for classification. Proceedings of the IEEE Conference on Evolutionary Computation

    Google Scholar 

  • Dawkins R (1989) The Selfish Gene. Oxford, Oxford Univeristy Press

    Google Scholar 

  • De Jong K (1988) Learning with genetic algorithms: An overview. Machine Learning 3(2,3): 121–138

    Article  Google Scholar 

  • De Jong K, Spears WM (1991) Learning Concept Classification Rules Using Genetic Algorithms. Proceedings of the Twelfth International Conference on Artificial Intelligence. 2: 651–657

    Google Scholar 

  • Dorigo M, Caro GD (1999) The Ant Colony Optimization Meta-Heuristic. New Ideas in Optimization. D. Corne, M. Dorigo and F. Glover. London, McGraw-Hill: 11–32

    Google Scholar 

  • Fogel D (1998) Evolutionary Computation: The Fossil Record, IEEE Press. Piscataway, New Jersey

    Google Scholar 

  • Fogel D (2000) Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press. PIscataway, New Jersey

    Google Scholar 

  • Fogel DB (1993) Evolving behaviors in the iterated prisoner’s dilemma. Evol. Comput. 1: 77–99

    Google Scholar 

  • Fogel DB, Fogel GB (1995) Additionally, models that incorporate spatial and temporal information, and those based on populations of individuals, are difficult to formulate or express. Evolutionary Programming IV: Proceedings of the Fourth Annual Conference on Evolutionary Programming. J. R. McDonnell, R. G. Reynolds and D. B. Fogel, MIT Press, Cambridge, MA: 565–577

    Google Scholar 

  • Fogel DB, Fogel GB (1997) On the instability of evolutionary stable strategies. BioSystems 44: 135–152

    Article  CAS  Google Scholar 

  • Fogel GB, Andrews PC (1998) On the instability of evolutionary stable strategies in small populations. Ecol. Modelling 109: 283–294

    Article  Google Scholar 

  • Fogel LJ (1962) Autonomous Automata. Industrial Research 4: 14–19

    Google Scholar 

  • Fogel LJ, Owens AJ (1966) Aritificial Intelligence Through Simulated Evolution. New York, John Wiley

    Google Scholar 

  • Forrest S, Jones T (1994) Modeling complex adaptive systems with Echo. Complex Systems: Mechanisms of Adaptation. R. J. Stonier and X. H. Yu. Amsterdam, IOS Press: 3–21

    Google Scholar 

  • Fox AD, Jones TA (1994) Food supply and the effects of recreational disturbance on the abundance and distribution of wintering Pochard on a gravel pit complex in southern Britain. Hydrobiologia 279/280: 253–261

    Article  Google Scholar 

  • Fraser A (1957) Simulation of Genetic Systems by Automatic Digital Computers I. Introduction. Australian J. of Biol. Sci. 10: 484–491

    Google Scholar 

  • Fraser A (1962) Optimization through Evolution and Recombination. Self-organizing Systems. M.C. Yovits, G. T. Jacobi and G. D. Goldstine. Washington DC, Spartan Books: 93–106

    Google Scholar 

  • Frey PW, Slate DJ (1991) Letter recognition using Holland-style adaptive classifiers. Machine Learning 6(2): 161–182

    Google Scholar 

  • Friedberg RM (1958) A Learning Machine: Part I. IBM J. of Research and Development 2: 2–13

    Google Scholar 

  • Friedberg RM (1959) A Learning Machine: Part II. IBM J. of Research and Development 3(3): 282–287

    Article  Google Scholar 

  • Gillman M, Hails R (1997) An Introduction to Ecological Modelling: Putting Practice into Theory. Oxford, Blackwell Science Ltd

    Google Scholar 

  • Grefenstette JJ (1988) Credit assignment in rule discovery systems based on genetic algorithms. Machine Learning 3(2,3): 225–245

    Google Scholar 

  • Hartviggsen G, Starmer WT (1995) Plant-herbivore coevolution in a spatially and genetically explicit model. Artificial Life 2: 239–258

    Article  Google Scholar 

  • Hassel MP, Comins HN (1976) Discrete time models for two-species competition. Theoretical Population Biology 9: 202–221

    Article  Google Scholar 

  • Haynes T, Sen S (1996) Evolving Behaviour Strategies in Predators and Prey. Adaption and Learning in Multiagent Systems. G. Weis and S. Sen. Berlin, Springer Verlag

    Google Scholar 

  • Haynes T, Wainwright R (1995) Strongly Typed Genetic Programming in Evolving Cooperation Strategies. Proceedings of the Sixth International conference on Genetic Algorithms. L. J. Eshelman: 271–278

    Google Scholar 

  • Holland JH (1969) Adaptive Plans Optimal for Payoff-Only Environments. Proc. of the 2nd Hawaii Int. Conf. on System Sciences, Hawaii

    Google Scholar 

  • Holland JH (1973) Genetic Algorithms and the Optimal Allocations of Trials. SIAM J. Comp 2(2): 88–105

    Article  Google Scholar 

  • Hraber P, Milne B (1997) Community Assembly in a model Ecosystem. Ecological Modelling 103: 267–285

    Article  Google Scholar 

  • Jeffers J (1999) Genetic Algorithms I. Machine Learning Methods for Ecological Applications. A. Fielding, Kluwer Academic Publishers: 107–121

    Google Scholar 

  • Jorgensen SE (1992) Development of models able to account for changes in species composition. Ecological Modelling 62: 195–208

    Article  Google Scholar 

  • Jorgensen SE (1992) Exergy and ecology. Ecological Modelling 63: 185–214.

    Article  Google Scholar 

  • Jorgensen SE, Nielsen S (1995) Emergy, envirton, exergy and ecological modelling. Ecological Modelling 77: 99–109

    Article  Google Scholar 

  • Judson OP (1994) The rise of the individual-based model in ecology. Trends in Ecology and Evolution 9: 9–14

    Article  Google Scholar 

  • Kaufmann SA, Johnson S (1992) Coevolution to the edge of chaos: coupled fitness landscapes, poised states and coevolutionary avalanches. Artificial Life II. C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen, Reading, MA: Addison-Wesley: 325–370

    Google Scholar 

  • Koza JR, Rice JP (1992) Evolution of food foraging strategies for the Caribbean anolis lizard using Genetic Programming. Adaptive Behavior 1(2): 47–74

    Google Scholar 

  • Koza JR (1992) Genetic Programming: On the Programming of Computers by means of Natural Selection, Cambridge, Mass.: MIT Press

    Google Scholar 

  • Koza JR (1994) Evolution of emergent cooperative behavior using genetic programming. Computing with Biological Metaphors. R. Paton. London, UK, Chapman & Hall: 280–297

    Google Scholar 

  • Lees B, Ritman K (1991) Decision-tree and rule-induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments. Environmental Management 15(6): 823–831

    Article  Google Scholar 

  • Levins R, Culver D (1971) Regional coexistence of species and competition between rare species. Bulletin of the Entomological Society of America 15: 237–240

    Google Scholar 

  • Lotka AJ (1927) Fluctuations in the abundance of species considered mathematically (with comment by V. Volterra). Nature 119: 12–13

    Google Scholar 

  • McCauley DE (1995) Effects of population dynamics on genetics in mosaic landscapes. Mosaic Landscapes and Ecological Processes. L. Hansson, L. Fahrig and G. Merriam. London, Chapman and Hall: 178–198

    Google Scholar 

  • McKay RI, Pearson RA (1997) Learning Spatial Relationships: Some Approaches. GeoComputation’ 97, University of Otago, Dunedin, New Zealand

    Google Scholar 

  • Motro U (1991) Co-operation and defection: playing the field and the ESS. J. Theor. Biol. 151: 145–154

    CAS  Google Scholar 

  • O’Callaghan J, Conrad M (1992) Symbiotic interactions in the EVOLVE III ecosystem model. Biosystems 26: 199–209

    Article  CAS  Google Scholar 

  • Potter MA, De Jong K (1994) A Cooperative Coevolutionary Approach to Function Optimization. Lecture Notes in Computer Science 866: 249–258

    Google Scholar 

  • Ray TS (1992) An apporach to the synthesis of life. Artificial Life II, Reading, MA, Addison Wesley

    Google Scholar 

  • Rechenberg I (1965) Cybernetic Solution Path of an Experimental Problem, Royal Aircraft Establishment, Library Translation

    Google Scholar 

  • Recknagel F, Bobbin J, Whigham P, Wilson H (2002) Comparative application of artificial neural networks and genetic algorithms for multivariate time series modelling of algal blooms in freshwater lakes. Journal of Hydroinformatics 4,2, 125–133.

    Google Scholar 

  • Rizki M, Conrad M (1985) Evolve III: A discrete events model of an evolutionary ecosystem. BioSystems 18: 121–133

    Article  CAS  Google Scholar 

  • Robertson GG, Riolo RL (1988) A tale of two classifier systems. Machine Learning 3(2,3): 139–159

    Google Scholar 

  • Rosenberg R (1967) Simulation of Genetic Populations with Biochemical Properties, Univ. Michigan, Ann Arbor

    Google Scholar 

  • Rosin CD, Belew RK (1997) New Methods for Competitive Coevolution. Evolutionary Computation 5(1): 1–29

    CAS  Google Scholar 

  • Sakamoto E, Iba H (2001) Inferring a System of Differential Equations for a Gene Regulatory Network by using Genetic Programming. IEEE Congress on Evolutionary Computation, Seoul, Korea, IEEE Piscataway, NJ

    Google Scholar 

  • Salomonsen J, Jensen J (1996) Use of a lake model to examine exergy response to changes in phytoplankton growth parameters and species composition. Ecological Modelling 87: 41–49

    Article  Google Scholar 

  • Schwefel HP (1965) Kybernetische Evolution als Strategie der Experimentellen Forschung in der Strömungstechnik, Technical University of Berlin

    Google Scholar 

  • Silverton J, Holtier S (1992) Cellular automation models of interspecific competition for space-the effect of pattern on process. Journal of Ecology 80: 527–534

    Google Scholar 

  • Sipper M (1994) Non-Uniform Cellular Automata: Evolution in Rule Space and Formation of Complex Structures. Artificial Life IV, MIT Press

    Google Scholar 

  • Smith JM (1982) Evolution and the Theory of Games. Cambridge, Cambridge University Press

    Google Scholar 

  • Smith JM, Price GR (1973) The logic of animal conflict. Nature 246: 15–18

    Article  Google Scholar 

  • Stockwell D, Peters D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13(2): 143–158

    Article  Google Scholar 

  • Svierezhev Y (2000) Thermodynamics and ecology. Ecological Modelling 132: 11–22

    Article  Google Scholar 

  • Todorovski L, Dzeroski S (1998) Modelling and prediction of phytoplankton growth with equation discovery. Ecological Modelling 113: 71–81

    Article  Google Scholar 

  • Visser ME, Alphen JJMV (1992) Adaptive superparasitism and patch time allocation in solitary parasitoids: an ESS model. J. Anim. Ecol. 61: 93–101

    Google Scholar 

  • Watkinson AR (1987) Plant Population Dynamics. Plant Ecology. M. J. Crawley. Oxford, Blackwell Scientific Publications: 137–184

    Google Scholar 

  • Whigham PA (1995) Inductive Bias and Genetic Programming. Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA’ 95): 461–467

    Google Scholar 

  • Whigham PA (2000) Induction of a marsupial density model using genetic programming and spatial relationships. Ecological Modelling 131(2–3): 299–317

    Article  Google Scholar 

  • Whigham PA, Crapper PF (1999) Time series modelling using genetic programming: An application to rainfall-runoff models. Advances in Genetic Programming 3. L. Spector, W. B. Langdon, U. O’Reilly and P. J. Angeline, MIT Press, Cambridge, MA, USA. 5: 89–104

    Google Scholar 

  • Whigham PA, Recknagel F (2000) Evolving Difference Equations to Model Freshwater Phytoplankton. 2000 Congress on Evolutionary Computation, San Diego, USA, IEEE, Piscataway, NJ

    Google Scholar 

  • Whigham PA, Recknagel F (1999) Predictive Modelling of Plankton Dynamics in Freshwater Lakes using Genetic Programming. MODSIM’ 99 International Congress on Modelling and Simulation, Hamilton, New Zealand, The Modelling and Simulation Society of Australia and New Zealand Inc

    Google Scholar 

  • Whitley D, Starkweather T (1990) Genitor II: a distributed genetic algorithm. Journal of Experimental and Theoretical Artificial Intelligence 2: 189–214

    Google Scholar 

  • Wilson SW (1987) Classifier systems and the animat problem. Machine Learning 2(3): 199–228

    Google Scholar 

  • Wolf LL, Waltz EC (1993) Alternative mating tactics in male white-faces dragonflies: experimental evidence for a behavioural assessment ESS. Anim. Behav. 46: 325–334

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation: 1:67–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whigham, P.A., Fogel, G.B. (2006). Ecological Applications of Evolutionary Computation. In: Recknagel, F. (eds) Ecological Informatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28426-5_5

Download citation

Publish with us

Policies and ethics