Skip to main content

Non-linear Approach to Grouping, Dynamics and Organizational Informatics of Benthic Macroinvertebrate Communities in Streams by Artificial Neural Networks

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   289.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan JD (1995) Stream Ecology’ structure and function of running waters’. Chapman & hall, 388 pp

    Google Scholar 

  • Allen TFH, Starr TB (1982) Hierarchy. The University of Chicago Press, 310 pp

    Google Scholar 

  • Boudjema G, Chau NP (1996) Revealing dynamics of ecological systems from natural recordings. Ecol. Model., 91, 15–23

    Article  Google Scholar 

  • Bunn SE, Edward DH, Loneragan NR (1986) Spatial and temporal variation in the macroinvertebrate fauna of streams of the northern jarrah forest, Western Australia: community structure. Freshwater Biology, 16, 67–91

    Google Scholar 

  • Brosse S, Lek S, Townsend CR (2001) Abundance, diversity, and structure of freshwater invertebrates and fish communities: an artificial neural network approach. New Zealand Journal of Marine and Freshwater Research, 35, 135–145

    Article  Google Scholar 

  • Calow P, Petts GE (1994) The Rivers Handbook ‘hydrological and ecological principles’. Blackwell Scientific Publications, 523 pp

    Google Scholar 

  • Carpenter GA, Grossberg S (1987) ART2: self-organization of stable category recognition codes for analog input patterns. Applied Optics, 26, 4919–4930

    Article  CAS  Google Scholar 

  • Chon TS, Park YS, Moon KH, Cha EY (1996) Patternizing communities by using an artificial neural network. Ecol. Model., 90, 69–78

    Article  Google Scholar 

  • Chon TS, Kwak IS, Park YS (2000a) Pattern recognition of long-term ecological data in community changes by using artificial neural networks: Benthic macroinvertebrates and chironomids in a polluted stream. Korean J. Ecol., 23, 89–100

    Google Scholar 

  • Chon TS, Park YS, Cha EY (2000b) Patterning of community changes in benthic macroinvertebrates collected from urbanized streams for the short time prediction by temporal artificial neural networks. In: Lek, S. and Guegan, J.F. (Eds.), Artificial Neuronal Networks: Application to Ecology and Evolution. Springer-Verlag, Berlin, pp. 99–114

    Google Scholar 

  • Chon TS, Park YS, Park JH (2000c) Determining temporal pattern of community dynamics by using unsupervised learning algorithms. Ecol. Model., 132, 151–166

    Article  Google Scholar 

  • Chon TS, Kwak IS, Park YS, Kim TH, Kim YS (2001) Patterning and short-term predictions of benthic macroinvertebrate community dynamics by using a recurrent artificial neural network. Ecol. Model., 146. (In Press)

    Google Scholar 

  • Cummins KW (1974) Structure and function of stream ecosystems. Bioscience, 24, 631–641

    Article  Google Scholar 

  • Cummins KW, Petersen RC, Howard FO, Wuycheck JC, Holt VI (1973) The utilization of leaf litter by stream detritovores. Ecology, 54, 336–345

    Article  Google Scholar 

  • Dimopoulos Y, Bourret P, Lek S (1995) Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Processing Letters, 2, 1–4

    Article  Google Scholar 

  • Elizondo DA, McClendon RW, Hoongenboom G (1994) Neural network models for predicting flowering and physiological maturity of soybean. Transactions of the ASAE, 37, 981–988

    Google Scholar 

  • Elman JL (1990) Finding structure in time. Cognitive Science, 14, 179–211

    Article  Google Scholar 

  • Fonseca JC, Marques JC, Paiva AA, Freitas AM, Madeira VMC, Jørgensen SE (2000) Nuclear DNA in the determination of weighing factors to estimate exergy from organisms biomass. Ecol. Model., 126, 179–189

    Article  CAS  Google Scholar 

  • Foody GM (1999) Applications of the self-organising feature map neural network in community data analysis. Ecol. Model., 120, 97–107

    Article  Google Scholar 

  • Giles CL, Kuhn GM, Williams RJ (1994) Dynamic recurrent neural networks: theory and applications. IEEE Transactions on Neural Networks, 5 153–156

    Article  Google Scholar 

  • Giraudel JL, Aurelle D, Berrebi P, Lek S (2000) Application of the self-organising mapping and fuzzy clustering to microsatellite data: How to detect genetic structure in brown trout (Salmo trutta) populations. In: Lek, S. and Guegan, J.F. (Eds.), Artificial Neuronal Networks: Application to Ecology and Evolution. Springer-Verlag, Berlin, pp. 187–202

    Google Scholar 

  • Grossberg S (1969) On the production and release of chemical transmitters and related topics in the cellular control. J. Theor. Biol., 22, 325–364

    Article  CAS  Google Scholar 

  • Grossberg S (1982) Studies of Mind and Brain: Neural Principals of Learning, Perception, Development, Cognition, and Motor Control. Reidel Press, Boston

    Google Scholar 

  • Hauer FR, Lamberti GA (1996) Methods in Stream Ecology. Academic Press, 674 pp

    Google Scholar 

  • Hawkes HA (1979) Invertebrates as indicators of river water quality. In: James, A. and Evision, L. (Eds.), Biological indicators of water quality. John Wiley and Sons, Chishester, Great Britain, pp. 2.1–2.45

    Google Scholar 

  • Haykin S (1994) Neural Networks. Macmillian College Publishing Company, 696 pp

    Google Scholar 

  • Hecht-Nielsen R (1987) Counter propagation networks. Proc. of the Int. Conf. On Neural networks, II, 19–32, IEEE Press, New York, June 1987

    Google Scholar 

  • Hecht-Nielsen R (1990) Neurocomputing. Addison-Wesley, New York, 433 pp

    Google Scholar 

  • Hellawell JM (1986) Biological indicators of freshwater pollution and environmental management. Elsevier, London, 546 pp.

    Google Scholar 

  • Hopfield JJ (1982) Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci. USA, Vol. 79, 2554–2558, April

    CAS  Google Scholar 

  • Huntingford C, Cox PM (1996) Use of statistical and neural network techniques to detect how stomatal conductance responds to changes in the local environment. Ecol. Model., 97, 217–246

    Article  Google Scholar 

  • Hynes HBN (1960) The biology of polluted waters. Liverpool Univ. Press. London, 202 pp

    Google Scholar 

  • Jørgensen SE (1992) Parameters, ecological constraints and exergy. Ecol. Model., 62, 163–170

    Article  Google Scholar 

  • Jørgensen SE (1994) Review and comparison of goal functions in system ecology. WIE MILIEU, 44, 11–20

    Google Scholar 

  • Jørgensen SE (1995) Exergy and ecological buffer capacities as measures of ecosystem health. Ecosys. Health, 1, 150–160

    Google Scholar 

  • Jørgensen SE (1997) Integration of ecosystem theories: A pattern, 2nd edition. Kluwer, Dordrecht, 400 pp

    Google Scholar 

  • Jørgensen SE, Nielsen SN, Mejer HF (1995) Emergy, environ exergy and ecological modeling. Ecol. Model., 77, 99–109

    Article  Google Scholar 

  • Kamgar-Parsi B, Gualtieri JA, Devancy JE, Kamgar-Parsi B (1990) Clustering with neural networks. Biol. Cybern., 63, 201–208

    Article  Google Scholar 

  • Kang DH, Chon TS, Park YS (1995) Monthly changes in benthic macroinvertebrate communities in different saprobities in the Suyong and Soktae streams of the Suyong river. Korean J. Ecol., 18, 157–177

    Google Scholar 

  • Kohonen T (1989) Self-organization and associative memory. Springer-Verlag, Berlin, 312 pp

    Google Scholar 

  • Kung SY (1993) Digital Neural Networks. Prentice Hall, Englewood Cliffs, New Jersey, 444 pp

    Google Scholar 

  • Kwon TS, Chon TS (1993) Ecological studies on benthic macroinvertebrates in the Suyong River. III. Water quality estimations using chemical and biological indices. Kor. J. Limnol., 26, 105–128

    Google Scholar 

  • Legendre P, Legendre L (1987) Developments in numerical ecology. Springer-Verlag, Berlin 585 pp

    Google Scholar 

  • Legendre P (1987) Constrained clustering. In: Legendre, P. and Legendre, L. (Eds.), Developments in numerical ecology. Springer-Verlag, Berlin. Germany, 289–307 pp

    Google Scholar 

  • Legendre P, Dallot S, Legendre L (1985) Sucession of species within a community: chronological clustering, with applications to marine and freshwater zooplankton. Am. Nat., 125, 257–288

    Article  Google Scholar 

  • Lek S, Guegan JF (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model., 120, 65–73

    Article  Google Scholar 

  • Lek S, Guegan JF (2000) Neuronal Networks: Algorithms and Architectures for Ecologists and Evolutionary Ecologists. In: Lek, S. and Guegan, J.F. (Eds.), Artificial Neuronal Networks: Application to Ecology and Evolution. Springer-Verlag, Berlin, pp. 3–27

    Google Scholar 

  • Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulagnier S (1996) Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Model., 90, 39–52

    Article  Google Scholar 

  • Levine ER, Kimes DS, Sigillito VG (1996) Classifying soil structure using neural networks. Ecol. Model., 92, 101–108

    Article  Google Scholar 

  • Lippmann RP (1987) An Introduction to computing with neural nets. IEEE ASSP Magazine, April. pp. 4–22

    Google Scholar 

  • Lohninger H, Stanc F (1992) Comparing the performance of neural networks to well-established methods of multivariate data analysis: the classification of mass spectral data. Fresenius J. Anal. Chem., 344, 186–189

    Article  CAS  Google Scholar 

  • Ludwig JA, Reynolds JF (1988) Statistical ecology: a primer on methods and computing. John Wiley and Sons, New York, 329 pp

    Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity, Bulletin of Mathematical Biophysics, 5, 115–133

    Google Scholar 

  • Melssen WJ, Smits JRM, Rolf GH, Kateman G (1993) Two-dimensional mapping of IR spectra using a parallel implemented self-organising feature map. Chemometrics and Intelligent Laboratory Systems, 18, 195–204

    Article  CAS  Google Scholar 

  • Norusis MJ (1986) SPSS/PC+ advanced statistics. SPSS inc., Chicago

    Google Scholar 

  • O’Neill RN, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton, 253 pp

    Google Scholar 

  • Pao YH (1989) Adaptive pattern recognition and neural networks. Addison-Wesley Publishing Company, Inc., New York, 309 pp

    Google Scholar 

  • Park YS, Kwak IS, Cha EY, Lek S, Chon TS (2001a) Relational patterning on different hierarchical levels in communities of benthic macroinvertebrates in an urbanized stream using an artificial neural network. J. Asia-Pacific Entomol. (Submitted)

    Google Scholar 

  • Park YS, Kwak IS, Chon TS, Kim JK, Jørgensen SE (2001b) Implementation of artificial neural networks in patterning and prediction of exergy in response to temporal dynamics of benthic macroinvertebrate communities in streams. Ecol. Model., 146. (In Press)

    Google Scholar 

  • Quinn MA, Halbert SE, Williams III L (1991) Spatial and temporal changes in aphid (Homoptera: Aphididae) species assemblages collected with suction traps in Idaho. J. Econ. Entomol., 84, 1710–1716

    Google Scholar 

  • Recknagel F, French M, Harkonen P, Yabunaka KI (1997) Artificial neural network approach for modelling and prediction of algal blooms. Eco. Model., 96, 11–28

    Article  CAS  Google Scholar 

  • Recknagel F, Wilson H (2000) Elucidation and prediction of aquatic ecosystems by artificial neuronal networks, In: Lek, S. and Guegan, J.F. (Eds.), Artificial Neuronal Networks: Application to Ecology and Evolution. Springer-Verlag, Berlin, pp. 143–155

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart, D.E. and McCelland, J.L. (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition, Vol. I: Foundations, MIT Press, Cambridge, pp. 318–362

    Google Scholar 

  • Salvador R, Piňol J, Tarantola S, Pla E (2001) Global sensitivity analysis and scale effects of a fire propagation model used over Mediterranean shrublands. Ecol. Model., 136, 175–189

    Article  Google Scholar 

  • Scardi M (2000) Neuronal network models of phytoplankton primary production, In: Lek. S. and Guegan, J.F. (Eds.), Artificial Neuronal Networks: Application to Ecology and Evolution. Springer-Verlag, Berlin, pp. 116–129

    Google Scholar 

  • Sladecek V (1979) Continental systems for the assessment of river water quality. In: James, A. and Evison, L. (Eds.), Biological Indicators of Water Quality. John Wiley & Sons, Chichester, pp. 3.1–3.32

    Google Scholar 

  • Spellerberg IF (1991) Monitoring Ecological Change. Cambridge University Press, 334 pp

    Google Scholar 

  • Stankovski V, Debeljak M, Bratko I, Adamic M (1998) Modelling the population dynamics of red deer (Cervus elaphus L.) with regard to forest development. Ecol. Model., 108, 143–153

    Article  Google Scholar 

  • Tan SS, Smeins FE (1996) Predicting grassland community changes with an artificial neural network model. Ecol. Model., 84, 91–97

    Article  Google Scholar 

  • Tittizer TT, Koth P (1979) Possibilities and limitations of biological methods of water analysis. In: James, A. and Evison, L. (Eds.), Biological Indicators of Water Quality. John Wiley and Sons, Chichester, Great Britain, pp. 4.1–4.21

    Google Scholar 

  • Tuma A, Haasis HD, Rentz O (1996) A comparison of fuzzy expert systems, neural networks and neuro-fuzzy approaches controlling energy and material flows. Ecol. Model., 85, 93–98

    Article  Google Scholar 

  • Wasserman PD (1989) Neural computing: Theory and practice. Van Nostrand Reinhold, New York

    Google Scholar 

  • Welch EB, Lindel T (1992) Ecological effects of wastewater ‘Applied limnology and pollutant effects’. Chapman & Hall, 425 pp

    Google Scholar 

  • Williams RJ, Zipser D (1989) A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1, 270–280

    Google Scholar 

  • Wray J, Green GGR (1994) Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network. Biol. Cybern., 71, 187–195

    Google Scholar 

  • Yoon BJ, Chon TS (1996) Community analysis in chironomids and biological assessment of water qualities in the Suyong and Soktae streams of the Suyong River. Kor. J. Limnol., 29(4), 275–289

    Google Scholar 

  • Zar JH (1984) Biostatistical Analysis. Prentice-Hall International, Inc, New Jersey, 718 pp

    Google Scholar 

  • Zurada JM (1992) Introduction to artificial neural systems. West Publishing Company. New York, 683 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chon, T.S., Park, Y.S., Kwak, I.S., Cha, E.Y. (2006). Non-linear Approach to Grouping, Dynamics and Organizational Informatics of Benthic Macroinvertebrate Communities in Streams by Artificial Neural Networks. In: Recknagel, F. (eds) Ecological Informatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28426-5_10

Download citation

Publish with us

Policies and ethics