Skip to main content

Prokaryotic Symbionts of Termite Gut Flagellates: Phylogenetic and Metabolic Implications of a Tripartite Symbiosis

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 41))

6 Conclusions

The large number of symbioses among termite gut flagellates and prokaryotes, the high level of integration evidenced by the elaborate attachment structures or the intracellular location, and the large proportion of the prokaryotic gut microbiota that is associated with the protozoa suggest a major importance of such symbioses for the hindgut metabolism of lower termites.

Molecular tools allow the identification of the phylogeny of the partners involved in the symbioses, and although these investigations are still far from complete, it is apparent that the symbionts represent unusual and mostly unstudied phylogenetic groups. As a consequence of the unusual phylogenetic position and the complete lack of isolates, the metabolic capacities of the symbionts and their role in the symbiosis are still largely obscure.

In order to understand the hindgut metabolisms of lower termites, it will be essential to elucidate the metabolic relationship between the flagellates and their symbionts. It is reasonable to assume that the functional roles of the partners are less diverse than their phylogenetic diversity, and in view of the possible co-evolution of the partners, the symbioses between prokaryotes and gut flagellates are also excellent case studies in the microbial ecology and evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball GH (1969) Organisms living on and in protozoa. In: Chen TT (ed) Research in protozoology, vol 3. Pergamon Press, New York, pp 565–718

    Google Scholar 

  • Bauer S, Tholen A, Overmann J, Brune A (2000) Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood-and soil-feeding termites by molecular and culture-dependent techniques. Arch Microbiol 173:126–173

    Article  CAS  PubMed  Google Scholar 

  • Berchtold M, Chatzinotas A, Schönhuber W, Brune A, Amann R, Hahn D, König H (1999) Differential enumeration and in situ localization of micro-organisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol 172:407–416

    Article  CAS  PubMed  Google Scholar 

  • Bloodgood RA, Fitzharris TP (1976) Specific association of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roach, Cryptocercus. Cytobios 17:103–122

    CAS  PubMed  Google Scholar 

  • Bloodgood RA, Miller KR, Fitzharris TP, McIntosh JR (1974) The ultrastructure of Pyrsonympha and its associated microorganisms. J Morphol 143:77–106

    Article  Google Scholar 

  • Boga H, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786

    Article  CAS  PubMed  Google Scholar 

  • Boga HI, Ludwig W, Brune A (2003) Sporomusa aerivorans sp. nov, an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite. Int J Syst Evol Microbiol 53:1397–1404

    Article  CAS  PubMed  Google Scholar 

  • Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387

    CAS  PubMed  Google Scholar 

  • Breznak JA (1994) Acetogenesis from carbon dioxide in termite guts. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 303–330

    Google Scholar 

  • Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publ, Dordrecht, pp 209–231

    Google Scholar 

  • Breznak JA, Leadbetter JR (2002) Termite gut spirochetes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer, K-H, Stackebrandt E (eds) The prokaryotes: an online electronic resource for the microbiological community, 3rd edn, release 3.10, September 2002, Springer-SBM, New York, release 3.10. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  • Brune A (2003) Symbionts aiding digestion. In: Cardé RT, Resh VH (eds) Encyclopedia of insects. Academic Press, New York, pp 1102–1107

    Google Scholar 

  • Brune A (2005) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, and Stackebrandt E (eds) The prokaryotes: an online electronic resource for the microbiological community, 3rd ed, Springer-SBM, New York (in press)

    Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    CAS  PubMed  Google Scholar 

  • Cerkasova A, Cerkasov J, Kulda J (1986) Resistance of trichomonads to metronidazole. Acta Universitatis Carolinae Biol 30:485–503

    Google Scholar 

  • Cleveland LR (1925) The effects of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates. Biol Bull 48:309–327

    CAS  Google Scholar 

  • Cleveland LR (1926) Symbiosis among animals with special reference to termites and their intestinal flagellates. Quart Rev Biol 1:51–64

    Article  Google Scholar 

  • Cleveland LR, Grimstone AV (1964) The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proc R Soc Lond Ser B Biol Sci 159:668–686

    Article  Google Scholar 

  • Cook TJ, Gold RE (1998) Organization of the symbiotic flagellate community in three castes of the Eastern Subterranean Termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 31:25–39

    Google Scholar 

  • Dacks JB, Silberman JD, Simpson AGB, Moriya S, Kudo T, Ohkuma M, Redfield RJ (2001) Oxymonads are closely related to the excavate taxon Trimastix. Mol Biol Evol 18:1034–1044

    CAS  PubMed  Google Scholar 

  • D’Ambrosio U, Dolan M, Wier AM, Margulis L (1999) Devescovinid trichomonad with axostyle-based rotary motor (“Rubberneckia”): Taxonomic assignment as Caduceia versatilis sp. nov. Eur J Protistol 35:327–337

    CAS  PubMed  Google Scholar 

  • De Bary A (1878) Über Symbiose. Ber Vers Deut Naturf Aerzte, Cassel, pp 121–126

    Google Scholar 

  • Dexter Dyer B, Khalsa O (1993) Surface bacteria of Streblomastix strix are sensory symbionts. Biosystems 31:169–180

    Article  Google Scholar 

  • Dolan M (2001) Speciation of termite gut protists: the role of bacterial symbionts. Int Microbiol 4:203–208

    Article  CAS  PubMed  Google Scholar 

  • Dolan M, Margulis L (1997) Staurojoenina and other symbionts in Neotermes from San Salvador Island, Bahamas. Symbiosis 22:229–239

    CAS  PubMed  Google Scholar 

  • Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    CAS  PubMed  Google Scholar 

  • Fröhlich J, König H (1999) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22:249–257

    PubMed  Google Scholar 

  • Fröhlich J, Sass H, Babenzien H-D, Kuhnigk T, Varma A, Saxena S, Nalepa C, Pfeiffer P, König H (1999) Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis. Can J Microbiol 45:145–152

    Article  PubMed  Google Scholar 

  • Fujita A, Shimizu I, Abe T (2001) Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): possible digestion of symbiont bacteria transferred by trophallaxis. Physiol Entomol 26:116–123

    Article  CAS  Google Scholar 

  • Gerbod D, Sanders E, Moriya S, Noel C, Takasu H, Fast NM, Delgado-Viscogliosi P, Ohkuma M, Kudo T, Capron M, Palmer JD, Keeling PJ, Viscogliosi E (2004) Molecular phylogenies of Parabasalia inferred from four protein genes and comparison with rRNA trees. Mol Phylogenet Evol 31:572–580

    Article  CAS  PubMed  Google Scholar 

  • Görtz H-D (2002) Symbiotic associations between ciliates and prokaryotes. In: Dworkin M et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, release 3.11. Springer, Berlin Heidelberg New York <http://141.150.157.117:8080/prokPUB/index.htm>

    Google Scholar 

  • Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azonutricum sp. nov and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1307–1314

    Article  CAS  PubMed  Google Scholar 

  • Hackstein JHP, Akhmanova A, Voncken F, van Hoek A, van Alen T, Boxma B, Moon-van der Staay SY, van der Staay G, Leunissen J, Huynen M, Rosenberg J, Veenhuis M (2002) Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zoology 104:290–302

    Article  Google Scholar 

  • Hollande A, Valentin J (1969) Appareil de Golgi, pinocytose, lysosomes, mitochondries, bactéries symbiontiques, atractophores et pleuromitose chez les Hypermastigines du genre Joenia. Affinités entre Joenidae et Trichomonadines. Protistologica 5:39–86

    Google Scholar 

  • Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    Article  CAS  PubMed  Google Scholar 

  • Hungate RE (1955) Mutualistic intestinal protozoa. In: Hutner SH, Lwoff A (eds) Biochemistry and physiology of protozoa, vol 2. Academic Press, New York, pp 159–199

    Google Scholar 

  • Huntenburg W, Stockert L, Smith-Somerville HE, Buhse HE Jr (1986) Trichomitus trypanoides (Trichomonadida) from the termite Reticulitermes flavipes. I. In vitro cultivation and cloning. Trans Am Microsc Soc 105:211–222

    Google Scholar 

  • Iida T, Ohkuma M, Ohtoko K, Kudo T (2000) Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol Ecol 34:17–26

    CAS  PubMed  Google Scholar 

  • Inoue T, Murashima K, Azuma J-I, Sugimoto A, Slaytor M (1997) Cellulose and xylan utilization in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Kitade O, Yoshimura T, Yamaoka I (2000) Symbiotic associations with protists. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publ, Dordrecht, pp 275–288

    Google Scholar 

  • Katzin LI, Kirby H (1939) The relative weight of termites and their protozoa. J Parasitol 25:444–445

    Google Scholar 

  • Kirby H Jr (1941) Organisms living on and in protozoa. In: Calkins GN, Summers FM (eds) Protozoa in biological research. Columbia Univ Press, New York, pp 1009–1113

    Google Scholar 

  • Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H (1996) A feasible role of sulfate-reducing bacteria in the termite gut. System Appl Microbiol 19:139–149

    CAS  Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    CAS  PubMed  Google Scholar 

  • Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689

    Article  CAS  PubMed  Google Scholar 

  • Leander BS, Keeling PJ (2004) Symbiotic innovation in the oxymonad Streblomastix strix. J Euk Microbiol 51:291–300

    Article  PubMed  Google Scholar 

  • Lee MJ, Schreurs PJ, Messer AC, Zinder SH (1987) Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Curr Microbiol 15:337–341

    Article  Google Scholar 

  • Leidy J (1881) The parasites of the termites. J Acad Nat Sci Philadelphia. 2nd Ser VIII:425–447

    Google Scholar 

  • Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345

    Article  CAS  PubMed  Google Scholar 

  • Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498

    Article  CAS  PubMed  Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    CAS  PubMed  Google Scholar 

  • Machida M, Kitade O, Miura T, Matsumoto T (2001) Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insect Soc 48:52–56

    Article  Google Scholar 

  • Margulis L, Hinkle G (1999) Large Symbiotic Spirochetes: Clevelandina, Cristispira, Diplocalyx, Hollandina, and Pillotina. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, and Stackebrandt E (eds) The prokaryotes: an online electronic resource for the microbiological community, 3rd edn, release 3.0, May 1999, Springer-SBM, New York

    Google Scholar 

  • Messer M, Lee MJ (1989) Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microb Ecol 18:275–284

    Article  CAS  Google Scholar 

  • Moriya S, Ohkuma M, Kudo T (1998) Phylogenetic position of symbiotic protist Dinenympha exilis in the hindgut of the termite Reticulitermes speratus inferred from the protein phylogeny of elongation factor 1 alpha. Gene 210:221–227

    Article  CAS  PubMed  Google Scholar 

  • Moriya S, Tanaka K, Ohkuma M, Sugano S, Kundo T (2001) Diversification of the microtubule system in the early stage of eukaryote evolution: elongation factor 1alpha and alpha-tubulin protein phylogeny of termite symbiotic oxymonad and hypermastigote protists. J Mol Evol 52:6–16

    CAS  PubMed  Google Scholar 

  • Moriya S, Dacks JB, Takagi A, Noda S, Ohkuma M, Doolittle WF, Kudo T (2003) Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas. J Euk Microbiol 50:190–197

    Article  PubMed  Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889

    PubMed  Google Scholar 

  • Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma J-I (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784

    Article  CAS  PubMed  Google Scholar 

  • Noda S, Ohkuma M, Usami R, Horikoshi K, Kudo T (1999) Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis. Appl Environ Microbiol 65:4935–4942

    CAS  PubMed  Google Scholar 

  • Noda S, Ohkuma M, Yamada A, Hongoh Y, Kudo T (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69:625–633

    Article  CAS  PubMed  Google Scholar 

  • Odelson DA, Breznak JA (1985a) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621

    CAS  PubMed  Google Scholar 

  • Odelson DA, Breznak JA (1985b) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl Environ Microbiol 49:622–626

    CAS  PubMed  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468

    CAS  PubMed  Google Scholar 

  • Ohkuma M, Noda S, Usami R, Horikoshi K, Kudo T (1996) Diversity of nitrogenfixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Appl Environ Microbiol 62:2747–2752

    CAS  PubMed  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999a) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65:4926–4934

    CAS  PubMed  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999b) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153

    CAS  PubMed  Google Scholar 

  • Ohkuma M, Iida T, Kudo T (1999c) Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181:123–129

    CAS  PubMed  Google Scholar 

  • Ohtoko K, Ohkuma M, Moriya S, Inoue T, Usami R, Kudo T (2000) Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles 4:343–349

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Noda S, Hongoh Y, Kudo T (2002) Diverse bacteria related to the Bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. Biosci Biotechnol Biochem 66:78–84

    Article  CAS  PubMed  Google Scholar 

  • Pierantoni U (1936) La simbiosi fisiologica nei termitidi xilofagi e nei loro flagellati intestinali. Arch Zool Ital 22:135–173

    Google Scholar 

  • Radek R (1994) Monocercomonides termitis n sp., an Oxymonad from the lower termite Kalotermes sinaicus. Arch Protistenkd 144:373–382

    Google Scholar 

  • Radek R (1999) Flagellates, bacteria, and fungi associated with termites: diversity and function in nutrition — a review. Ecotropica 5:183–196

    Google Scholar 

  • Radek R, Hausmann K, Breunig A (1992) Ectobiotic and endocytobiotic bacteria associated with the termite flagellate Joenia annectens. Acta Protozool 31:93–107

    Google Scholar 

  • Radek R, Rösel J, Hausmann K (1996) Light and electron microscopic study of the bacterial adhesion to termite flagellates applying lectin cytochemistry. Protoplasma 193:105–122

    Article  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  Google Scholar 

  • Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (2001) Methanogenic symbionts and the locality of their host lower termites. Microbes Environ 16:43–47

    Article  Google Scholar 

  • Stingl U, Brune A (2003) Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes. Protist 154:147–155

    Article  CAS  PubMed  Google Scholar 

  • Stingl U, Maass A, Radek R, Brune A (2004) Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of bacteroidales: description of ‘candidatus vestibaculum illigatum’. Microbiology 150:2229–2235

    Article  CAS  PubMed  Google Scholar 

  • Stingl U, Radek R, Yang H, Brune A (2005) “Endomicrobia”: Cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 71:1473–1479

    Article  CAS  PubMed  Google Scholar 

  • Tamm S (1980) The ultrastructure of prokaryotic-eukaryotic cell junctions. J Cell Sci 44:335–352

    CAS  PubMed  Google Scholar 

  • Tamm S (1982) Flagellated ectosymbiotic bacteria propel a eukaryotic cell. J Cell Biol 49:697–709

    Article  Google Scholar 

  • Tayasu I, Sugimoto A, Wada E, Abe T (1994) Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81:229–231

    Article  Google Scholar 

  • Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449

    Article  CAS  PubMed  Google Scholar 

  • Tholen A, Schink B, Brune A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149

    CAS  Google Scholar 

  • Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240

    CAS  PubMed  Google Scholar 

  • Trager W (1934) The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis, and of certain other termite protozoa. Biol Bull66:182–190

    Google Scholar 

  • Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Wenzel M, Radek R, Brugerolle G, König H (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39:11–24

    Article  Google Scholar 

  • Yamin MA (1979) Termite flagellates. Sociobiology 4:1–119

    Google Scholar 

  • Yamin MA (1980) Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Appl Environ Microbiol 39:859–863

    CAS  PubMed  Google Scholar 

  • Yamin MA (1981) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211:58–59

    CAS  PubMed  Google Scholar 

  • Yamin MA, Trager W (1979) Cellulolytic activity of an axenically-cultivated termite flagellate, Trichomitopsis termopsidis. J Gen Microbiol 113:417–420

    CAS  Google Scholar 

  • Yang H, Schmitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7:916–932

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T, Watanabe T, Tsunoda K, Takahashi M (1993) Distribution of the cellulolytic activities in the lower termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Mater Org 27:273–284

    Google Scholar 

  • Yoshimura T, Fujino T, Ito T, Tsunoda K, Takahashi M (1996) Ingestion and decomposition of wood and cellulose by the protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy. Holzforschung 50:99–104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brune, A., Stingl, U. (2005). Prokaryotic Symbionts of Termite Gut Flagellates: Phylogenetic and Metabolic Implications of a Tripartite Symbiosis. In: Overmann, J. (eds) Molecular Basis of Symbiosis. Progress in Molecular and Subcellular Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28221-1_3

Download citation

Publish with us

Policies and ethics