Skip to main content

Symbiosis of Thioautotrophic Bacteria with Riftia pachyptila

  • Chapter
Molecular Basis of Symbiosis

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 41))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological Interactions. Geophysical monograph 91. Am Geophys Union, Washington, DC, pp 85–114

    Google Scholar 

  • Arndt C, Gaill F, Felbeck H (2001) Anaerobic sulfur metabolism in thiotrophic symbioses. J Exp Biol 204:741–750

    PubMed  CAS  Google Scholar 

  • Arp AJ, Childress JJ, Fisher CR (1985) Blood gas transport in Riftia pachyptila. Bull Biol Soc Wash 6:289–300

    Google Scholar 

  • Arp AJ, Childress JJ, Vetter RD (1987) The sulphide-binding protein in the blood of the vestimentiferan tube-worm, Riftia Pachyptila, is the extracellular haemoglobin. J Exp Biol 128:139–158

    CAS  Google Scholar 

  • Bailly X, Jollivet D, Vanin S, Deutsch J, Zal F, Lallier F, Toulmond A (2002) Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Mol Biol Evol 19:1421–1433

    PubMed  CAS  Google Scholar 

  • Bailly X, Leroy R, Carney S, Collin O, Zal F, Toulmond A, Jollivet D (2003) The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection. Proc Nat Acad Sci USA 100:5885–5890

    Article  PubMed  CAS  Google Scholar 

  • Beynon JD, MacRae IJ, Huston SL, Nelson DC, Segel IH, Fisher AJ (2001) Crystal structure of ATP sulfurylase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila. Biochemistry 40:14509–14517

    Article  PubMed  CAS  Google Scholar 

  • Boetius A, Felbeck H (1995) Digestive enzymes in marine-invertebrates from hydrothermal vents and other reducing environments. Mar Biol 122:105–113

    Article  CAS  Google Scholar 

  • Bosch C, Grassé PP (1984a) Cycle partiel des bactéries chimioautotrophes symbiotiques et eurs rapports avec les bactériocytes chez Riftia pachyptila Jones (Pogonophore Vestimentifère) I. Le trophosome et les bactériocytes. CR Acad Sci III Vie 299:371–376

    Google Scholar 

  • Bosch C, Grassé PP (1984b) Cycle partiel des bactéries chimioautotrophes symbiotiques et eurs rapports avec les bactériocytes chez Riftia pachyptila Jones (Pogonophore Vestimentifère) II. L’évolution des bactéries symbotiques et des bactériocytes. CR Acad Sci III Vie 299:413–419

    Google Scholar 

  • Bright M, Sorgo A (2003) Ultrastructural reinvestigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae). Invert Biol 122:347–368

    Article  Google Scholar 

  • Bright M, Keckeis H, Fisher CR (2000) An autoradiographic examination of carbon fixation, transfer and utilization in the Riftia pachyptila symbiosis. Mar Biol 136:621–632

    Article  Google Scholar 

  • Cary SC, Warren W, Anderson E, Giovannoni SJ (1993) Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol Mar Biol Biotech 2:51–62

    CAS  Google Scholar 

  • Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature 302:58–61

    Article  CAS  Google Scholar 

  • Cavanaugh CM (1985) Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull Biol Soc Wash 6:373–388

    Google Scholar 

  • Cavanaugh CM (1994) Microbial symbiosis: patterns of diversity in the marine environment. Am Zool 34:79–89

    Google Scholar 

  • Cavanaugh CM, Robinson JJ (1996) CO2 fixation in chemoautotroph-invertebrate symbioses: expression of Form I and Form II RubisCO. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer Academic Publ Dordrecht, pp 285–292

    Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342

    CAS  PubMed  Google Scholar 

  • Cavanaugh CM, McKiness ZP, Newton ILG, Stewart FJ (2005) Marine chemosynthetic symbioses. In: Dworkin M, Falkow S, Rosenberg E, et al (eds) The Prokaryotes: a handbook on the biology of bacteria, 3rd edn. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Chen XA, Li S, Aksoy S (1999) Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol 48:49–58

    Article  PubMed  CAS  Google Scholar 

  • Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic processes. Oceanogr Mar Biol 30:337–441

    Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Kochevar RE, Sanders NK, Alayse AM (1991) Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tubeworm, Riftia pachyptila Jones. Biol Bull 180:135–153

    Google Scholar 

  • Childress JJ, Lee RW, Sanders NK, Felbeck H, Oros DR, Toulmond A, Desbruyeres D, Kennicutt MC, Brooks J (1993) Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pCO2. Nature 362:147–169

    Article  CAS  Google Scholar 

  • Chua KL, Chan YY, Gan YH (2003) Flagella are virulence determinants of Burkholderia pseudomallei. Infect Immun 71:1622–1629

    Article  PubMed  CAS  Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM, Herzen RPV, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083

    CAS  PubMed  Google Scholar 

  • Dale C, Wang B, Moran N, Ochman H (2003) Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. Mol Biol Evol 20:1188–1194

    Article  PubMed  CAS  Google Scholar 

  • De Cian MC, Andersen AC, Bailly X, Lallier FH (2003a) Expression and localization of carbonic anhydrase and ATPases in the symbiotic tubeworm Riftia pachyptila. J Exp Biol 206:399–409

    Article  PubMed  CAS  Google Scholar 

  • De Cian MC, Bailly X, Morales J, Strub JM, Van Dorsselaer A, Lallier FH (2003b) Characterization of carbonic anhydrases from Riftia pachyptila, a symbiotic invertebrate from deep-sea hydrothermal vents. Proteins 51:327–339

    Article  PubMed  CAS  Google Scholar 

  • Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ (2004) Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of Camponotus species and their endosymbionts, Candidatus blochmannia. Syst Biol 53:95–110

    Article  PubMed  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • Di Meo CA, Wilbur AE, Holben WE, Feldman RA, Vrijenhoek RC, Cary SC (2000) Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl Environ Microbiol 66:651–658

    Article  PubMed  Google Scholar 

  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510

    PubMed  CAS  Google Scholar 

  • Dons L, Eriksson E, Jin YX, Rottenberg ME, Kristensson K, Larsen CN, Bresciani J, Olsen JE (2004) Role of flagellin and the two-component CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence. Infect Immun 72:3237–3244

    Article  PubMed  CAS  Google Scholar 

  • Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Plant Sci 24:191–224

    Article  CAS  Google Scholar 

  • Felbeck H (1981) Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213:336–338

    CAS  PubMed  Google Scholar 

  • Felbeck H (1985) CO2 fixation in the hydrothermal vent tube worm Riftia pachyptila (Jones). Physiol Zool 58:272–281

    Google Scholar 

  • Felbeck H, Jarchow J (1998) Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila. Physiol Zool 71:294–302

    PubMed  CAS  Google Scholar 

  • Felbeck H, Arndt C, Hentschel U, Childress JJ (2004) Experimental application of vascular and coelomic catheterization to identify vascular transport mechanisms for inorganic carbon in the vent tubeworm, Riftia pachyptila. Deep Sea Res 51:401–411

    Article  CAS  Google Scholar 

  • Feldman R, Black M, Cary C, Lutz R, Vrijenhoek R (1997) Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol Mar Biol Biotech 6:268–277

    CAS  Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–436

    CAS  Google Scholar 

  • Fisher CR (1995) Toward an appreciation of hydrothermal vent animals: their environment, physiological ecology, and tissue stable isotope values. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological Interactions. Geophysical monograph 91. Am Geophys Union, Washington, DC, pp 297–316

    Google Scholar 

  • Fisher CR (1996) Ecophysiology of primary production at deep-sea vents and seeps. In: Uiblein R, Ott J, Stachowtish M (eds) Deep-sea and extreme shallow-water habitats: affinities and adaptations. Biosystematics and ecology series, vol 11. Austrian Academy of Sciences, Vienna, pp 311–334

    Google Scholar 

  • Fisher, CR, Childress JJ, Arp AJ, Brooks JM, Distel D, Favuzzi JA, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988) Physiology, morphology, and biochemical composition of Riftia pachyptila at Rose Garden in 1985. Deep Sea Res 35:1745–1758

    Article  Google Scholar 

  • Flores JF, Fisher CR, Carney SL, Green BN, Freytag JK, Schaeffer SW, Royer JR. WE (2005) Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proc Nat Acad Sci USA 102:2713–2718

    Article  PubMed  CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882

    Article  PubMed  CAS  Google Scholar 

  • Gardiner SL, Jones ML (1993) Vestimentifera. In: Harrison FW, Gardiner SL (eds) Microscopic anatomy of invertebrates, vol 12. Onychophora, Chilopoda, and lesser Protostomata. Wiley-Liss, New York, pp 371–460

    Google Scholar 

  • Gavin R, Merino S, Altarriba M, Canals R, Shaw JG, Tomas JM (2003) Lateral flagella are required for increased cell adherence, invasion and biofilm formation by Aeromonas spp. FEMS Microbiol Lett 224:77–83

    Article  PubMed  CAS  Google Scholar 

  • Gebruk AV, Krylova EM, Lein AY, Vinogradov GM, Anderson E, Pimenov NV, Cherkashev GA, Crane K (2003) Methane seep community of the Hakon Mosby mud volcano (the Norwegian Sea): composition and trophic aspects. Sarsia 88:394–403

    Article  Google Scholar 

  • Girguis PR, Lee RW, Desaulniers N, Childress JJ, Pospesel M, Felbeck H, Zal F (2000) Fate of nitrate acquired by the tubeworm Riftia pachyptila. Appl Environ Microbiol 66:2783–2790

    Article  PubMed  CAS  Google Scholar 

  • Girguis PR, Childress JJ, Freytag JK, Klose K, Stuber R (2002) Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts. J Exp Biol 205:3055–3066

    PubMed  CAS  Google Scholar 

  • Goffredi SK, Childress JJ (2001) Activity and inhibitor sensitivity of ATPases in the hydrothermal vent tubeworm Riftia pachyptila: a comparative approach. Mar Biol 138:259–265

    Article  CAS  Google Scholar 

  • Goffredi SK, Childress JJ, Desaulniers NT, Lallier FH (1997a) Sulfide acquisition by the hydrothermal vent tubeworm Riftia pachyptila appears to be via uptake of HS−, rather than H2S. J Exp Biol 200:2069–2616

    Google Scholar 

  • Goffredi SK, Childress JJ, Desaulniers NT, Lee RW, Lallier FH, Hammond D (1997b) Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external pCO2 and upon proton-equivalent ion transport by the worm. J Exp Biol 200:883–896

    PubMed  CAS  Google Scholar 

  • Goffredi SK, Childress JJ, Lallier FH, Desaulniers NT (1999) The ionic composition of the hydrothermal vent tube worm Riftia pachyptila: evidence for the elimination of SO4 2− and H+ and for a Cl−/HCO3− shift. Physiol Biochem Zool 72:296–306

    Article  PubMed  CAS  Google Scholar 

  • Grassle JF (1985) Hydrothermal vent animals — distribution and biology. Science 229:713–717

    PubMed  CAS  Google Scholar 

  • Gros O, De Wulf-Durand P, Frenkiel L, Moueza M (1998) Putative environmental transmission of sulfur-oxidizing bacterial symbionts in tropical lucinid bivalves inhabiting various environments. FEMS Microbiol Lett 160:257–262

    CAS  Google Scholar 

  • Gros O, Liberge M, Heddi A, Khatchadourian C, Felbeck H (2003) Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 69:6264–6267

    Article  PubMed  CAS  Google Scholar 

  • Guy RD, Fogel ML, Berry JA (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol 101:37–47

    PubMed  CAS  Google Scholar 

  • Hand SC (1987) Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate-sulfur bacteria symbioses. Biol Bull 173:260–276

    CAS  Google Scholar 

  • Harmer T, Nussbaumer A, Bright M, Cavanaugh CM (2005) Stalking the wild symbiont: free-living counterparts to tubeworm symbionts at deep-sea hydrothermal vents (in preparation)

    Google Scholar 

  • Hentschel U, Felbeck H (1993) Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila. Nature 366:338–340

    Article  CAS  Google Scholar 

  • Hughes DS, Felbeck H, Stein JL (1997) A histidine protein kinase homolog from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol 63:3494–3498

    PubMed  CAS  Google Scholar 

  • Johnson KS, Childress JJ, Beehler CL (1988a) Short-term temperature variability in the Rose Garden hydrothermal vent field — an unstable deep-sea environment. Deep Sea Res 35:1711–1721

    Article  Google Scholar 

  • Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Beehler CL (1988b) Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep Sea Res 35:1723–1744

    Article  Google Scholar 

  • Johnson KS, Childress JJ, Beehler CL, Sakamoto CM (1994) Biogeochemistry of hydrothermal vent mussel communities — the deep sea analog to the intertidal zone. Deep Sea Res 41:993–1011

    Article  CAS  Google Scholar 

  • Jones ML (1981) Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift. Science 213:333–336

    PubMed  CAS  Google Scholar 

  • Jones ML, Gardiner SL (1988) Evidence for a transient digestive tract in Vestimentifera. Proc Biol Soc Wash 101:423–433

    Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. In: Postgate JR, Kelly DP (eds) Sulphur bacteria. R Soc Lond, pp 69–98

    Google Scholar 

  • Kirov SM (2003) Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis. FEMS Microbiol Lett 224:151–159

    Article  PubMed  CAS  Google Scholar 

  • Kochevar RE, Childress JJ (1996) Carbonic anhydrase in deep-sea chemoautotrophic symbioses. Mar Biol 125:375–383

    Article  CAS  Google Scholar 

  • Laue BE, Nelson DC (1994) Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol 176:3723–3729

    PubMed  CAS  Google Scholar 

  • Laue BE, Nelson DC (1997) Sulfur-oxidizing symbionts have not co-evolved with their hydrothermal vent tubeworm hosts: an RFLP analysis. Mol Mar Biol Biotech 6:180–188

    CAS  Google Scholar 

  • Lee RW, Childress JJ (1994) Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts. Appl Environ Microbiol 60:1852–1858

    PubMed  CAS  Google Scholar 

  • Lee RW, Robinson JJ, Cavanaugh CM (1999) Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase. J Exp Biol 202:289–300

    PubMed  CAS  Google Scholar 

  • Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res 24:857–863

    Article  Google Scholar 

  • Lutz RA, Shank TM, Fornari DJ, Haymon RM, Lilley MD, von Damm KL, Desbruyeres D (1994) Rapid growth at deep-sea vents. Nature 371:663–664

    Article  Google Scholar 

  • McKiness ZP (2004) Evolution of endosymbioses in deep-sea bathymodioline mussels (Mollusca:Bivalvia). PhD Thesis, Harvard University

    Google Scholar 

  • McMullin ER, Hourdez S, Schaeffer SW, Fisher CR (2003) Phylogeny and biogeography of deep-sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis 34:1–41

    Google Scholar 

  • Millero FJ, Plese T, Fernandez M (1987) The dissociation of hydrogen-sulfide in seawater. Limnol Oceanogr 33:269–274

    Article  Google Scholar 

  • Millikan DS, Felbeck H, Stein JL (1999) Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol 65:3129–3133

    PubMed  CAS  Google Scholar 

  • Minic Z, Herve G (2003) Arginine metabolism in the deep sea tube worm Riftia pachyptila and its bacterial endosymbiont. J Biol Chem 278(42):40527–40533

    Article  PubMed  CAS  Google Scholar 

  • Minic Z, Herve G (2004) Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont. Eur J Biochem 271:3093–3102

    Article  PubMed  CAS  Google Scholar 

  • Minic Z, Simon V, Penverne B, Gaill F, Herve G (2001) Contribution of the bacterial endosymbiont to the biosynthesis of pyrimidine nucleotides in the deep-sea tubeworm Riftia pachyptila. J Biol Chem 276:23777–23784

    Article  PubMed  CAS  Google Scholar 

  • Mira A, Moran NA (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microbial Ecol 44:137–143

    Article  CAS  Google Scholar 

  • Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93:2873–2878

    Article  PubMed  CAS  Google Scholar 

  • Moran N, Baumann P (1994) Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends Ecol Evol 9:15–20

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Google Scholar 

  • Nelson DC, Fisher CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In: Karl DM (ed) Microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, pp 125–167

    Google Scholar 

  • Nelson K, Fisher CR (2000) Absence of cospeciation in deep-sea vestimentiferan tubeworms and their bacterial endosymbionts. Symbiosis 28:1–15

    Google Scholar 

  • Nelson DC, Hagen KD (1995) Physiology and biochemistry of symbiotic and free-living chemoautotrophic bacteria. Am Zool 35:91–101

    CAS  Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98

    Article  PubMed  CAS  Google Scholar 

  • Peck HD Jr, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. In: Postgate JR, Kelly DP (eds) Sulphur bacteria. R Soc Lond, pp 13–36

    Google Scholar 

  • Peek AS, Vrijenhoek RC, Gaut BS (1998) Accelerated evolutionary rate in sulfuroxidizing endosymbiotic bacteria associated with the mode of symbiont transmission. Mol Biol Evol 15:1514–1523

    PubMed  CAS  Google Scholar 

  • Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70:5426–5433

    Article  PubMed  CAS  Google Scholar 

  • Pimenov NV, Savvichev AS, Rusanov II, Lein AY, Ivanov MV (2000) Microbiological processes of the carbon and sulfur cycles at cold methane seeps of the North Atlantic. Microbiology 69:709–720

    Article  CAS  Google Scholar 

  • Polz MF, Ott JA, Bright M, Cavanaugh CM (2000) When bacteria hitch a ride. ASM News 66:531–539

    Google Scholar 

  • Powell MA, Somero GN (1986) Adaptations to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol Bull 171:274–290

    CAS  Google Scholar 

  • Rau GH (1981) Hydrothermal vent clam and tube worm 13C/12C: further evidence of non-photosynthetic food sources. Science 213:338–340

    CAS  PubMed  Google Scholar 

  • Renosto F, Martin RL, Borrell JL, Nelson DC, Segel IH (1991) ATP sulfurylase from trophosome tissue of Riftia pachyptila (hydrothermal vent tube worm). Arch Biochem Biophys 290:66–78

    Article  PubMed  CAS  Google Scholar 

  • Robinson JJ, Cavanaugh CM (1995) expression of from I and form II Rubisco in chemoautotrophic symbioses: implications for the interpretation of stable isotope values. Limnol Oceanogr 40:1496–1502

    Article  CAS  Google Scholar 

  • Robinson J, Stein JL, Cavanaugh CM (1998) Cloning and sequencing of a form II ribulose-1,5-bisphosphate carboxylase/oxygenase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol 180:1596–1599

    PubMed  CAS  Google Scholar 

  • Robinson J, Scott KM, Swanson ST, O’Leary MH, Horken K, Tabita FR, Cavanaugh CM (2003) Kinetic isotope effect and characterization of form II RubisCO from the chemoautotrophic endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila. Limnol Oceanogr 48:48–54

    Article  CAS  Google Scholar 

  • Roeske CA, O’Leary MH (1984) Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23:6275–6284

    Article  CAS  Google Scholar 

  • Roeske CA, O’Leary MH (1985) Carbon isotope effect on carboxylation of ribulose bisphosphate catalyzed by ribulosebisphosphate carboxylase from Rhodospirillum rubrum. Biochemistry 24:1603–1607

    Article  PubMed  CAS  Google Scholar 

  • Rouxel O, Fouquet Y, Ludden JN (2004) Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge: evidence from sulfur, selenium, and iron isotopes. Geochim Cosmochim Ac 68:2295–2311

    Article  CAS  Google Scholar 

  • Schmaljohann R, Flügel HJ (1987) Methane-oxidizing bacteria in pogonophora. Sarsia 72:91–98

    CAS  Google Scholar 

  • Schulze A, Halanych KM (2003) Siboglinid evolution shaped by habitat preference and sulfide tolerance. Hydrobiologia 496(1–3):199–205

    Article  Google Scholar 

  • Scott KM (2003) A d13C-based carbon flux model for the hydrothermal vent chemoautotrophic symbiosis Riftia pachyptila predicts sizeable CO2 gradients at the host-symbiont interface. Environ Microbiol 5:424–432

    Article  PubMed  CAS  Google Scholar 

  • Segel IH, Renosto F, PA Seubert (1987) Sulfate-activating enzymes. In: Jakoby WB, Griffith O (eds) Methods in enzymology, vol 143. Sulfur and sulfur amino acids. Academic Press, New York, pp 334–349

    Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II 45:517–567

    Article  Google Scholar 

  • Sorgo A, Gaill F, Lechaire JP, Arndt C, Bright M (2002) Glycogen storage in the Riftia pachyptila trophosome: contribution of host and symbionts. Mar Ecol Prog Ser 231:115–120

    CAS  Google Scholar 

  • Stewart FJ, Newton ILG, Cavanaugh CM (2005) Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces. TRENDS Microbiol 13:439–448

    Article  PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    PubMed  CAS  Google Scholar 

  • Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P (2000) Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol 66:2898–2905

    Article  PubMed  CAS  Google Scholar 

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton Univ Press, Princeton, NJ

    Google Scholar 

  • Van Dover CL, Fry B (1994) Microorganisms as food resources at deep-sea hydrothermal vents. Limnol Oceanog 39:51–57

    Google Scholar 

  • Van Dover CL, Lutz RA (2004) Experimental ecology at deep-sea hydrothermal vents: a perspective. J Exp Mar Biol Ecol 300: 273–307

    Article  Google Scholar 

  • Weber RE, Vinogradov SN (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev 81:569–628

    PubMed  CAS  Google Scholar 

  • Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861

    Article  PubMed  CAS  Google Scholar 

  • Zal F, Lallier FH, Wall JS, Vinogradov SN, Toulmond A (1996) The multihemoglobin system of the hydrothermal vent tube worm Riftia pachyptila.1. Reexamination of the number and masses of its constituents. J Biol Chem 271:8869–8874

    Article  PubMed  CAS  Google Scholar 

  • Zal F, Suzuki T, Kawasaki Y, Childress JJ, Lallier FH, Toulmond A (1997) Primary structure of the common polypeptide chain b from the multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila: an insight on the sulfide binding-site. Proteins 29:562–574

    Article  PubMed  CAS  Google Scholar 

  • Zal F, Leize E, Lallier FH, Toulmond A, Van Dorsselaer A, Childress JJ (1998) S-sulfohemoglobin and disulfide exchange: the mechanisms of sulfide binding by Riftia pachyptila hemoglobins. Proc Nat Acad Sci USA 95:8997–9002

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ, Millero FJ (1993) The products from the oxidation of H2S in seawater. Geochim Cosmochim Ac 57:1705–1718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stewart, F.J., Cavanaugh, C.M. (2005). Symbiosis of Thioautotrophic Bacteria with Riftia pachyptila . In: Overmann, J. (eds) Molecular Basis of Symbiosis. Progress in Molecular and Subcellular Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28221-1_10

Download citation

Publish with us

Policies and ethics