Advertisement

Activation of heterotrimeric G-proteins independent of a G-protein coupled receptor and the implications for signal processing

  • M. J. Cismowski
  • S. M. Lanier
Chapter
Part of the Reviews of Physiology, Biochemistry, and Pharmacology book series (REVIEWS, volume 155)

Abstract

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Keywords

Guanine Nucleotide Guanine Nucleotide Exchange Factor Asymmetric Cell Division Dynein Light Chain Guanine Nucleotide Dissociation Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abba MC, Drake JA, Hawkins KA, Hu Y, Sun H, Notcovich C, Gaddis S, Sahin A, Baggerly K, Aldaz CM (2004) Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res 6:R499–R513PubMedCrossRefGoogle Scholar
  2. Adhikari A, Sprang SR (2003) Thermodynamic characterization of the binding of activator of G protein signaling 3 (AGS3) and peptides derived from AGS3 with G alpha i1. J Biol Chem 278:51825–51832PubMedCrossRefGoogle Scholar
  3. Afshar K, Willard FS, Colombo K, Johnston CA, McCudden CR, Siderovski DP, Gonczy P (2004) RIC-8 is required for GPR-1/2-dependent Galpha function during asymmetric division of C. elegans embryos. Cell 119:219–230PubMedCrossRefGoogle Scholar
  4. Agell N, Bachs O, Rocamora N, Villalonga P (2002) Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin. Cell Signal 14:649–654PubMedCrossRefGoogle Scholar
  5. Ahnert-Hilger G, Schafer T, Spicher K, Grund C, Schultz G, Wiedenmann B (1994) Detection of G-protein heterotrimers on large dense core and small synaptic vesicles of neuroendocrine and neuronal cells. Eur J Cell Biol 65:26–38PubMedGoogle Scholar
  6. Ahringer J (2003) Control of cell polarity and mitotic spindle positioning in animal cells. Curr Opin Cell Biol 15:73–81PubMedCrossRefGoogle Scholar
  7. Aronin N, DiFiglia M (1992) The subcellular localization of the G-protein Gi alpha in the basal ganglia reveals its potential role in both signal transduction and vesicle trafficking. J Neurosci 12:3435–3444PubMedGoogle Scholar
  8. Barbacid M (1987) Ras genes. Annu Rev Biochem 56:779–827PubMedCrossRefGoogle Scholar
  9. Bellaiche Y, Radovic A, Woods DF, Hough CD, Parmentier ML, O’Kane CJ, Bryant PJ, Schweisguth F (2001) The Partner of Inscuteable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila. Cell 106:355–366PubMedCrossRefGoogle Scholar
  10. Berman DM, Gilman AG (1998) Mammalian RGS proteins: barbarians at the gate. J Biol Chem 273:1269–1272PubMedCrossRefGoogle Scholar
  11. Bernard ML, Peterson YK, Chung P., Jourdan J, Lanier SM (2001) Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J Biol Chem 276:1585–1593PubMedCrossRefGoogle Scholar
  12. Blackmer T, Larsen EC, Takahashi M, Martin TF, Alford S, Hamm HE (2001) G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science 292:293–297PubMedCrossRefGoogle Scholar
  13. Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939PubMedCrossRefGoogle Scholar
  14. Blumer (2003) Receptors Channels 9:195PubMedCrossRefGoogle Scholar
  15. Blumer JB, Chandler LJ, Lanier SM (2002) Expression analysis and subcellular distribution of the two G-protein regulators AGS3 and LGN indicate distinct functionality. Localization of LGN to the midbody during cytokinesis. J Biol Chem 277:15897–15903PubMedCrossRefGoogle Scholar
  16. Blumer JB, Bernard ML, Peterson YK, Nezu J, Chung P, Dunican DJ, Knoblich JA, Lanier SM (2003) Interaction of activator of G-protein signaling 3 (AGS3) with LKB1, a serine/threonine kinase involved in cell polarity and cell cycle progression: phosphorylation of the G-protein regulatory (GPR) motif as a regulatory mechanism for the interaction of GPR motifs with Gi alpha. J Biol Chem 278:23217–23220PubMedCrossRefGoogle Scholar
  17. Bomsel M, Mostov K (1992) Role of heterotrimeric G proteins in membrane traffic. Mol Biol Cell 3:1317–1328PubMedGoogle Scholar
  18. Bonacci TM, Ghosh M, Malik S, Smrcka AV (2005) Regulatory interactions between the amino terminus of G-protein betagamma subunits and the catalytic domain of phospholipase Cbeta2. J Biol Chem 280:10174–10181PubMedCrossRefGoogle Scholar
  19. Bowers MS, McFarland K, Lake RW, Peterson YK, Lapish CC, Gregory ML, Lanier SM, Kalivas PW (2004) Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron 42:269–281PubMedCrossRefGoogle Scholar
  20. Brogan MD, Behrend EN, Kemppainen RJ (2001) Regulation of Dexras1 expression by endogenous steroids. Neuroendocrinology 74:244–250PubMedCrossRefGoogle Scholar
  21. Bueb JL, Mousli M, Bronner C, Rouot B, Landry Y (1990) Activation of Gi-like proteins, a receptor-independent effect of kinins in mast cells. Mol Pharmacol 38:816–822PubMedGoogle Scholar
  22. Burde R, Dippel E, Seifert R (1996) Receptor-independent G protein activation may account for the stimulatory effects of first-generation H1-receptor antagonists in HL-60 cells, basophils, and mast cells. Biochem Pharmacol 51:125–131PubMedCrossRefGoogle Scholar
  23. Burstein ES, Spalding TA, Brann MR (1998) Structure/function relationships of a G-protein coupling pocket formed by the third intracellular loop of the m5 muscarinic receptor. Biochemistry 37:4052–4058PubMedCrossRefGoogle Scholar
  24. Campbell KS, Cooper S, Dessing M, Yates S, Buder A (1998) Interaction of p59fyn kinase with the dynein light chain. Tctex-1, and colocalization during cytokinesis. J Immunol 161:1728–1737PubMedGoogle Scholar
  25. Cao X, Cismowski MJ, Sato M, Blumer JB, Lanier SM (2004) Identification and characterization of AGS4: a protein containing three G-protein regulatory motifs that regulate the activation state of Gialpha. J Biol Chem 279:27567–27574PubMedCrossRefGoogle Scholar
  26. Chandler LJ, Sutton G, Dorairaj NR, Norwood D (2001) N-methyl D-aspartate receptor-mediated bidirectional control of extracellular signal-regulated kinase activity in cortical neuronal cultures. J Biol Chem 276:2627–2636PubMedCrossRefGoogle Scholar
  27. Chatterjee TK, Fisher RA (2000) Cytoplasmic, nuclear, and golgi localization of RGS proteins. Evidence for N-terminal and RGS domain sequences as intracellular targeting motifs. J Biol Chem 275:24013–24021PubMedCrossRefGoogle Scholar
  28. Chatterjee TK, Fisher RA (2000) Novel alternative splicing and nuclear localization of human RGS12 gene products. J Biol Chem 275:29660–29671PubMedCrossRefGoogle Scholar
  29. Cheng HY, Obrietan K, Cain SW, Lee BY, Agostino PV, Joza NA, Harrington ME, Ralph MR, Penninger JM (2004) Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43:715–728PubMedCrossRefGoogle Scholar
  30. Cho H, Kozasa T, Takekoshi K, De Gunzburg J, Kehrl JH (2000) RGS14, a GTPase-activating protein for Gialpha, attenuates Gialpha-and G13alpha-mediated signaling pathways. Mol Pharmacol 58:569–576PubMedGoogle Scholar
  31. Cho H, Kim DU, Kehrl JH (2005) RGS14 is a centrosomal and nuclear cytoplasmic shuttling protein that traffics to promyelocytic leukemia nuclear bodies following heat shock. J Biol Chem 280:805–814PubMedGoogle Scholar
  32. Cismowski MJ, Takesono A, Ma C, Lizano JS, Xie X, Fuernkranz H, Lanier SM, Duzic E (1999) Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat Biotechnol 17:878–883PubMedCrossRefGoogle Scholar
  33. Cismowski MJ, Ma C, Ribas C, Xie X, Spruyt M, Lizano JS, Lanier SM, Duzic E (2000) Activation of heterotrimeric G-protein signaling by a ras-related protein: implications for signal integration. J Biol Chem 275:23421–23424PubMedCrossRefGoogle Scholar
  34. Cismowski MJ, Takesono A, Ma C, Lanier SM, Duzic E (2002) Identification of modulators of mammalian G-protein signaling by functional screens in the yeast Saccharomyces cerevisiae. Methods Enzymol 344:153–168PubMedGoogle Scholar
  35. Colombo K, Grill SW, Kimple RJ, Willard FS, Siderovski DP, Gonczy P (2003) Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300:1957–1961PubMedCrossRefGoogle Scholar
  36. Couwenbergs C, Spilker AC, Gotta M (2004) Control of embryonic spindle positioning and Galpha activity by C. elegans RIC-8. Curr Biol 14:1871–1876PubMedCrossRefGoogle Scholar
  37. Cox AD, Der CJ (2003) The dark side of ras: regulation of apoptosis. Oncogene 22:8999–9006PubMedCrossRefGoogle Scholar
  38. Crouch MF, Simson L (1997) The G-protein G(I) regulates mitosis but not DNA synthesis in growth factor-activated fibroblasts: a role for the nuclear translocation of G(I). FASEB J 11:189–198PubMedGoogle Scholar
  39. Crouch MF, Osborne GW, Willard FS (2000) The GTP-binding protein G(ialpha) translocates to kinetochores and regulates the M-G(1) cell cycle transition of Swiss 3T3 cells. Cell Signal 12:153–163PubMedCrossRefGoogle Scholar
  40. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662PubMedCrossRefGoogle Scholar
  41. Denker SP, McCaffery JM, Palade GE, Insel PA, Farquhar MG (1996) Differential distribution of alpha subunits and beta gamma subunits of heterotrimeric G proteins on Golgi membranes of the exocrine pancreas. J Cell Biol 133:1027–1040PubMedCrossRefGoogle Scholar
  42. Detert H, Seifert R, Schunack W (1996) Cationic amphiphiles with G-protein-stimulatory activity: studies on the role of the basic domain in the activation process. Pharmazie 51:67–72PubMedGoogle Scholar
  43. DeVries L, Farquhar MG (1999) RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends Cell Biol 9:138–144CrossRefGoogle Scholar
  44. DeVries L, Fischer T, Tronchere H, Brothers GM, Strockbine B, Siderovski DP, Farquhar MG (2000) Activator of G protein signaling 3 is a guanine dissociation inhibitor for Galpha I subunits. Proc Natl Acad Sci USA 97:14364–14369CrossRefGoogle Scholar
  45. Dohlman HG, Thorner J (1997) RGS proteins and signaling by heterotrimeric G proteins. J Biol Chem 272:3871–3874PubMedCrossRefGoogle Scholar
  46. Du Q, Macara IG (2004) Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119:503–516PubMedCrossRefGoogle Scholar
  47. Du Q, Stukenberg PT, Macara IG (2001) A mammalian partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat Cell Biol 3:1069–1075PubMedCrossRefGoogle Scholar
  48. Duzic E, Lanier SM (1992) Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. III. Coupling of alpha 2-adrenergic receptor subtypes in a cell type-specific manner. J Biol Chem 267:24045–24052PubMedGoogle Scholar
  49. Falk JD, Vargiu P, Foye PE, Usui H, Perez J, Danielson PE, Lerner DL, Bernal J, Sutcliffe JG (1999) Rhes: a striatal-specific Ras homolog related to Dexras1. J Neurosci Res 57:782–788PubMedCrossRefGoogle Scholar
  50. Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH (2000) Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28:183–193PubMedCrossRefGoogle Scholar
  51. Feig LA, Cooper GM (1988) Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated ras proteins. Mol Cell Biol 8:2472–2478PubMedGoogle Scholar
  52. Fiordalisi JJ, Holly SP, Johnson II RL, Parise LV, Cox AD (2002) A distinct class of dominant negative Ras mutants: cytosolic GTP-bound Ras effector domain mutants that inhibit Ras signaling and transformation and enhance cell adhesion. J Biol Chem 277:10813–10823PubMedCrossRefGoogle Scholar
  53. Franzoni L, Nicastro G, Pertinhez TA, Oliveira E, Nakaie CR, Paiva AC, Schreier S, Spisni A (1999) Structure of two fragments of the third cytoplasmic loop of the rat angiotensin II AT1A receptor: implications with respect to receptor activation and G-protein selection and coupling. J Biol Chem 274:227–235PubMedCrossRefGoogle Scholar
  54. Freissmuth M, Waldhoer M, Bofill-Cardona E, Nanoff C (1999) G protein antagonists. Trends Pharmacol Sci 20:237–245PubMedCrossRefGoogle Scholar
  55. Gaetz J, Kapoor TM (2004) Dynein/dynactin regulate metaphase spindle length by targeting depolymerizing activities to spindle poles. J Cell Biol 166:465–471PubMedCrossRefGoogle Scholar
  56. Ghosh M, Peterson YK, Lanier SM, Smrcka AV (2003) Receptor and nucleotide independent mechanisms for promoting G-protein subunit dissociation. J Biol Chem 278:34747–34750PubMedCrossRefGoogle Scholar
  57. Gotta M, Dong Y, Peterson YK, Lanier SM, Ahringer J (2003) Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr Biol 13:1029–1037PubMedCrossRefGoogle Scholar
  58. Goubaeva F, Ghosh M, Malik S, Yang J, Hinkle PM, Griendling KK, Neubig RR, Smrcka AV (2003) Stimulation of cellular signaling and G protein subunit dissociation by G protein betagamma subunit-binding peptides. J Biol Chem 278:19634–19641PubMedCrossRefGoogle Scholar
  59. Graham TE, Key TA, Kilpatrick K, Dorin RI (2001) Dexras1/AGS-1, a steroid hormone-induced guanosine triphosphate-binding protein, inhibits 3’,5’-cyclic adenosine monophosphate-stimulated secretion in AtT-20 corticotroph cells. Endocrinology 142:2631–2640PubMedCrossRefGoogle Scholar
  60. Graham TE, Prossnitz ER, Dorin RI (2002) Dexras1/AGS-1 inhibits signal transduction from the Gi-coupled formyl peptide receptor to Erk-1/2 MAP kinases. J Biol Chem 277:10876–10882PubMedCrossRefGoogle Scholar
  61. Graham TE, Qiao Z, Dorin RI (2004) Dexras1 inhibits adenylyl cyclase. Biochem Biophys Res Commun 316:307–312PubMedCrossRefGoogle Scholar
  62. Harrison A, Olds-Clarke P, King SM (1998) Identification of the t complex-encoded cytoplasmic dynein light chain tctex1 in inner arm I1 supports the involvement of flagellar dyneins in meiotic drive. J Cell Biol 140:1137–1147PubMedCrossRefGoogle Scholar
  63. Helms JB (1995) Role of heterotrimeric GTP binding proteins in vesicular protein transport: indications for both classical and alternative G protein cycles. FEBS Lett 369:84–88PubMedCrossRefGoogle Scholar
  64. Herrmann C (2003) Ras-effector interactions: after one decade. Curr Opin Struct Biol 13:122–129PubMedCrossRefGoogle Scholar
  65. Herrmann C, Horn G, Spaargaren M, Wittinghofer A (1996) Differential interaction of the ras family GTPbinding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ralguanine nucleotide exchange factor. J Biol Chem 271:6794–6800PubMedCrossRefGoogle Scholar
  66. Herzog H, Hort YJ, Ball HJ, Hayes G, Shine J, Selbie LA (1992) Cloned human neuropeptide Y receptor couples to two different second messenger systems. Proc Natl Acad Sci USA 89:5794–5798PubMedGoogle Scholar
  67. Hess HA, Roper JC, Grill SW, Koelle MR (2004) RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell 119:209–218PubMedCrossRefGoogle Scholar
  68. Higashijima T, Burnier J, Ross EM (1990) Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines: mechanism and structural determinants of activity. J Biol Chem 265:14176–14186PubMedGoogle Scholar
  69. Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559PubMedCrossRefGoogle Scholar
  70. Hollinger S, Taylor JB, Goldman EH, Hepler JR (2001) RGS14 is a bifunctional regulator of Galphai/o activity that exists in multiple populations in brain. J Neurochem 79:941–949PubMedCrossRefGoogle Scholar
  71. Hollinger S, Ramineni S, Hepler JR (2003) Phosphorylation of RGS14 by protein kinase A potentiates its activity toward G alpha I. Biochemistry 42:811–819PubMedCrossRefGoogle Scholar
  72. Hughes JR, Bullock SL, Ish-Horowicz D (2004) Inscuteable mRNA localization is dynein-dependent and regulates apicobasal polarity and spindle length in Drosophila neuroblasts. Curr Biol 14:1950–1956PubMedCrossRefGoogle Scholar
  73. Ja WW, Roberts RW (2004) In vitro selection of state-specific peptide modulators of G protein signaling using mRNA display. Biochemistry 43:9265–9275PubMedCrossRefGoogle Scholar
  74. Jaffrey SR, Fang M, Snyder SH (2002) Nitrosopeptide mapping: a novel methodology reveals s-nitrosylation of dexras1 on a single cysteine residue. Chem Biol 9:1329–1335PubMedCrossRefGoogle Scholar
  75. Jordan JD, Carey KD, Stork PJ, Iyengar R (1999) Modulation of rap activity by direct interaction of Galpha(o) with Rap1 GTPase-activating protein. J Biol Chem 274:21507–21510PubMedCrossRefGoogle Scholar
  76. Kaushik R, Yu F, Chia W, Yang X, Bahri S (2003) Subcellular localization of LGN during mitosis: evidence for its cortical localization in mitotic cell culture systems and its requirement for normal cell cycle progression. Mol Biol Cell 14:3144–3155PubMedCrossRefGoogle Scholar
  77. Kavelaars A, Jeurissen F, von Frijtag Drabbe Kunzel J, Herman van Roijen J, Rijkers GT, Heijnen CJ (1993) Substance P induces a rise in intracellular calcium concentration in human T lymphocytes in vitro: evidence of a receptor-independent mechanism. J Neuroimmunol 42:61–70PubMedCrossRefGoogle Scholar
  78. Kemppainen RJ, Behrend EN (1998) Dexamethasone rapidly induces a novel ras superfamily member-related gene in AtT-20 cells. J Biol Chem 273:3129–3131PubMedCrossRefGoogle Scholar
  79. Kemppainen RJ, Cox E, Behrend EN, Brogan MD, Ammons JM (2003) Identification of a glucocorticoid response element in the 3′-flanking region of the human Dexras1 gene. Biochim Biophys Acta 1627:85–89PubMedGoogle Scholar
  80. Kerov (2005) Mol Cell Neurosci 28:485PubMedCrossRefGoogle Scholar
  81. Kimple RJ, DeVries L, Tronchere H, Behe CI, Morris RA, Gist Farquhar M, Siderovski DP (2001) RGS12 and RGS14 GoLoco motifs are Galpha(I) interaction sites with guanine nucleotide dissociation inhibitor activity. J Biol Chem 276:29275–29281PubMedCrossRefGoogle Scholar
  82. Kimple RJ, Kimple ME, Betts L, Sondek J, Siderovski DP (2002) Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature 416:878–881PubMedCrossRefGoogle Scholar
  83. Kimple RJ, Willard FS, Hains MD, Jones MB, Nweke GK, Siderovski DP (2004) Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif. Biochem J 378:801–808PubMedCrossRefGoogle Scholar
  84. Kinoshita-Kawada M, Oberdick J, Xi Zhu M (2004) A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. Brain Res Mol Brain Res 132:73–86PubMedCrossRefGoogle Scholar
  85. Klein C, Paul JI, Sauve K, Schmidt MM, Arcangeli L, Ransom J, Trueheart J, Manfredi JP, Broach JR, Murphy AJ (1998) Identification of surrogate agonists for the human FPRL-1 receptor by autocrine selection in yeast. Nat Biotechnol 16:1334–1337PubMedCrossRefGoogle Scholar
  86. Klinker JF, Seifert R (1997) Morphine and muscle relaxants are receptor-independent G-protein activators and cromolyn is an inhibitor of stimulated G-protein activity. Inflamm Res 46:46–50PubMedCrossRefGoogle Scholar
  87. Klinker JF, Seifert R, Damm H, Rommelspacher H (1997) Activation by beta-carbolines of G-proteins in HL-60 membranes and the bovine retinal G-protein transducin in a receptor-independent manner. Biochem Pharmacol 53:1621–1626PubMedCrossRefGoogle Scholar
  88. Knoblich JA (2001) Asymmetric cell division during animal development. Nat Rev Mol Cell Biol 2:11–20PubMedCrossRefGoogle Scholar
  89. Kroslak T, Koch T, Kahl E, Hollt V (2001) Human phosphatidylethanolamine-binding protein facilitates heterotrimeric G protein-dependent signaling. J Biol Chem 276:39772–39778PubMedCrossRefGoogle Scholar
  90. Lankford K, Cypher C, Letourneau P (1990) Nerve growth cone motility. Curr Opin Cell Biol 2:80–85PubMedGoogle Scholar
  91. Law GJ, Northrop AJ, Mason WT (1993) Rab3-peptide stimulates exocytosis from mast cells via a pertussis toxin-sensitive mechanism. FEBS Lett 333:56–60PubMedCrossRefGoogle Scholar
  92. Leschke C, Storm R, Breitweg-Lehmann E, Exner T, Nurnberg B, Schunack W (1997) Alkyl-substituted amino acid amides and analogous di-and triamines: new non-peptide G protein activators. J Med Chem 40:3130–3139PubMedCrossRefGoogle Scholar
  93. Lova P, Paganini S, Hirsch E, Barberis L, Wymann M, Sinigaglia F, Balduini C, Torti M (2003) A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem 278:131–138PubMedCrossRefGoogle Scholar
  94. Luo Y, Denker BM (1999) Interaction of heterotrimeric G protein Galphao with Purkinje cell protein-2: evidence for a novel nucleotide exchange factor. J Biol Chem 274:10685–10688PubMedCrossRefGoogle Scholar
  95. Maier O., Ehmsen E., Westermann P. (1995) Trimeric G protein alpha subunits of the Gs and Gi families localized at the Golgi membrane. Biochem Biophys Res Commun 208:135–143PubMedCrossRefGoogle Scholar
  96. Malbon CC (1997) Heterotrimeric G-proteins and development. Biochem Pharmacol 53:1–4PubMedCrossRefGoogle Scholar
  97. Marjamaki A, Sato M, Bouet-Alard R, Yang Q, Limon-Boulez I, Legrand C, Lanier SM (1997) Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. Integration of stimulatory and inhibitory input to the effector adenylyl cyclase. J Biol Chem 272:16466–16473PubMedCrossRefGoogle Scholar
  98. Martin ME, Hidalgo J, Vega FM, Velasco A (1999) Trimeric G proteins modulate the dynamic interaction of PKAII with the Golgi complex. J Cell Sci 112:3869–3878PubMedGoogle Scholar
  99. Martin-McCaffrey L, Willard FS, Oliveira-dos-Santos AJ, Natale DR, Snow BE, Kimple RJ, Pajak A, Watson AJ, Dagnino L, Penninger JM, Siderovski DP, D’Souza SJ (2004) RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote. Dev Cell 7:763–769PubMedCrossRefGoogle Scholar
  100. Marty C, Browning DD, Ye RD (2003) Identification of tetratricopeptide repeat 1 as an adaptor protein that interacts with heterotrimeric G proteins and the small GTPase Ras. Mol Cell Biol 23:3847–3858PubMedCrossRefGoogle Scholar
  101. McCormick F (1995) Ras-related proteins in signal transduction and growth control. Mol Reprod Dev 42:500–506PubMedCrossRefGoogle Scholar
  102. Meng J, Casey PJ (2002) Activation of Gz attenuates Rap1-mediated differentiation of PC12 cells. J Biol Chem 277:43417–43424PubMedCrossRefGoogle Scholar
  103. Meng J, Glick JL, Polakis P, Casey PJ (1999) Functional interaction between Galpha(z) and Rap1GAP suggests a novel form of cellular cross-talk. J Biol Chem 274:36663–36669PubMedCrossRefGoogle Scholar
  104. Merdes A, Heald R, Samejima K, Earnshaw WC, Cleveland DW (2000) Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J Cell Biol 149:851–862PubMedCrossRefGoogle Scholar
  105. Miller KG, Rand JB (2000) A role for RIC-8 (Synembryn) and GOA-1 (G(o)alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics 156:1649–1660PubMedGoogle Scholar
  106. Mittal V, Linder ME (2004) The RGS14 GoLoco domain discriminates among Galphai isoforms. J Biol Chem 279:46772–46778PubMedCrossRefGoogle Scholar
  107. Mochizuki N, Cho G, Wen B, Insel PA (1996) Identification and cDNA cloning of a novel human mosaic protein, LGN, based on interaction with G alpha i2. Gene 181:39–43PubMedCrossRefGoogle Scholar
  108. Mochizuki N, Ohba Y, Kiyokawa E, Kurata T, Murakami T, Ozaki T, Kitabatake A, Nagashima K, Matsuda M (1999) Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with G alpha(I). Nature 400:891–894PubMedCrossRefGoogle Scholar
  109. Mousli M, Bueb JL, Bronner C, Rouot B, Landry Y (1990) G protein activation: a receptor-independent mode of action for cationic amphiphilic neuropeptides and venom peptides. Trends Pharmacol Sci 11:358–362PubMedCrossRefGoogle Scholar
  110. Mueller S, Cao X, Welker R, Wimmer E (2002) Interaction of the poliovirus receptor CD155 with the dynein light chain Tctex-1 and its implication for poliovirus pathogenesis. J Biol Chem 277:7897–7904PubMedCrossRefGoogle Scholar
  111. Nagano F, Orita S, Sasaki T, Naito A, Sakaguchi G, Maeda M, Watanabe T, Kominami E, Uchiyama Y, Takai Y (1998) Interaction of Doc2 with tctex-1, a light chain of cytoplasmic dynein. Implication in dynein-dependent vesicle transport. J Biol Chem 273:30065–30068PubMedCrossRefGoogle Scholar
  112. Nair KS, Mendez A, Blumer JB, Rosenzweig DH, Slepak VZ (2005) The presence of a Leu-Gly-Asn repeat enriched protein (LGN), a putative binding partner of transducin, in ROD photoreceptors. Invest Ophthalmol Vis Sci 46:383–389PubMedCrossRefGoogle Scholar
  113. Nanoff C, Kudlacek O, Freissmuth M (2002) Development of Gs-selective inhibitory compounds. Methods Enzymol 344:469–480PubMedGoogle Scholar
  114. Natochin M, Lester B, Peterson YK, Bernard ML, Lanier SM, Artemyev NO (2000) AGS3 inhibits GDP dissociation from Gα subunits of Gi family and rhodopsin-dependent activation of transducin. J Biol Chem 275:40981–40985PubMedCrossRefGoogle Scholar
  115. Natochin M, Gasimov KG, Artemyev NO (2001) Inhibition of GDP/GTP exchange on G alpha subunits by proteins containing G-protein regulatory motifs. Biochemistry 40:5322–5328PubMedGoogle Scholar
  116. Ngsee JK, Miller K, Wendland B, Scheller RH (1990) Multiple GTP-binding proteins from cholinergic synaptic vesicles. J Neurosci 10:317–322PubMedGoogle Scholar
  117. Nurnberg B, Ahnert-Hilger G (1996) Potential roles of heterotrimeric G proteins of the endomembrane system. FEBS Lett 389:61–65PubMedCrossRefGoogle Scholar
  118. Ogier-Denis E, Couvineau A, Maoret JJ, Houri JJ, Bauvy C, De Stefanis D, Isidoro C, Laburthe M, Codogno P (1995) A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem 270:13–16PubMedCrossRefGoogle Scholar
  119. Ogier-Denis E, Houri JJ, Bauvy C, Codogno P (1996) Guanine nucleotide exchange on heterotrimeric Gi3 protein controls autophagic sequestration in HT-29 cells. J Biol Chem 271:28593–28600PubMedCrossRefGoogle Scholar
  120. Ogier-Denis E, Petiot A, Bauvy C, Codogno P (1997) Control of the expression and activity of the Galphainteracting protein (GAIP) in human intestinal cells. J Biol Chem 272:24599–24603PubMedCrossRefGoogle Scholar
  121. Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, Williams RL (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103:931–943PubMedCrossRefGoogle Scholar
  122. Parmentier ML, Woods D, Greig S, Phan PG, Radovic A, Bryant P, O’Kane CJ (2000) Rapsynoid/partner of inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J Neurosci 20:RC84PubMedGoogle Scholar
  123. Pattingre S, DeVries L, Bauvy C, Chantret I, Cluzeaud F, Ogier-Denis E, Vandewalle A, Codogno P (2003) The G-protein regulator AGS3 controls an early event during macroautophagy in human intestinal HT-29 cells. J Biol Chem 278:20995–21002PubMedCrossRefGoogle Scholar
  124. Pattingre S, Petiot A, Codogno P (2004) Analyses of Galpha-interacting protein and activator of G-proteinsignaling-3 functions in macroautophagy. Methods Enzymol 390:17–31PubMedCrossRefGoogle Scholar
  125. Perez DM, DeYoung MB, Graham RM (1993) Coupling of expressed alpha 1B-and alpha 1D-adrenergic receptor to multiple signaling pathways is both G protein and cell type specific. Mol Pharmacol 44:784–795PubMedGoogle Scholar
  126. Peterson YK, Bernard ML, Hong Z, Graber SG, Lanier SM (2000) Stabilization of the GDP-bound conformation of Giα by a peptide derived from the G-protein regulatory motif of AGS3. J Biol Chem 275:33193–33196PubMedCrossRefGoogle Scholar
  127. Peterson YK, Hazard III S, Graber SG, Lanier SM (2002) Identification of structural features in the G-protein regulatory motif required for regulation of heterotrimeric G-proteins. J Biol Chem 277:6767–6770PubMedCrossRefGoogle Scholar
  128. Pinxteren JA, O’Sullivan AJ, Tatham PE, Gomperts BD (1998) Regulation of exocytosis from rat peritoneal mast cells by G protein beta gamma-subunits. EMBO J 17:6210–6218PubMedCrossRefGoogle Scholar
  129. Pizzinat N, Takesono A, Lanier SM (2001) Identification of a truncated form of the G-protein regulator AGS3 in heart that lacks the tetratricopeptide repeat domains. J Biol Chem 276:16601–16610PubMedCrossRefGoogle Scholar
  130. Repke H, Bienert M (1987) Mast cell activation—a receptor-independent mode of substance P action?. FEBS Lett 221:236–240PubMedCrossRefGoogle Scholar
  131. Reynolds NK, Schade MA, Miller KG (2005) Convergent, RIC-8-dependent G{alpha} signaling pathways in the caenorhabditis elegans synaptic signaling network. Genetics 169:651–670PubMedCrossRefGoogle Scholar
  132. Ribas C, Takesono A, Sato M, Hildebrandt JD, Lanier SM (2002) Pertussis toxin-insensitive activation of the heterotrimeric G-proteins Gi/Go by the NG108-15 G-protein activator. J Biol Chem 277:50223–50225PubMedCrossRefGoogle Scholar
  133. Ross EM, Higashijima T (1994) Regulation of G-protein activation by mastoparans and other cationic peptides. Methods Enzymol 237:26–37PubMedGoogle Scholar
  134. Ross EM, Wilkie TM (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69:795–827PubMedCrossRefGoogle Scholar
  135. Rupnik M, Law GJ, Mason WT, Zorec R (1997) Mastoparan and Rab3AL peptide potentiation of calciumindependent secretory activity in rat melanotrophs is inhibited by GDPβS. FEBS Lett 411:356–358PubMedCrossRefGoogle Scholar
  136. Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop—a common motif in ATP-and GTP-binding proteins. Trends Biochem Sci 15:430–434PubMedCrossRefGoogle Scholar
  137. Sato M, Kataoka R, Dingus J, Wilcox M, Hildebrandt J, Lanier SM (1995) Factors determining specificity of signal transduction by G-protein-coupled receptors. IV. Regulation of signal transfer from receptor to G-protein. J Biol Chem 270:15269–15276PubMedCrossRefGoogle Scholar
  138. Sato M, Ribas C, Hildebrandt JD, Lanier SM (1996) Characterization of a G-protein activator in the neuroblastoma-glioma cell hybrid NG108-15. J Biol Chem 271:30052–30060PubMedCrossRefGoogle Scholar
  139. Sato M, Gettys TW, Lanier SM (2004) AGS3 and signal integration by Galpha(s)-and Galpha(i)-coupled receptors: AGS3 blocks the sensitization of adenylyl cyclase following prolonged stimulation of a Galpha(i)-coupled receptor by influencing processing of Galpha(i). J Biol Chem 279:13375–13382PubMedCrossRefGoogle Scholar
  140. Schade MA, Reynolds NK, Dollins CM, Miller KG (2005) Mutations that rescue the paralysis of caenorhabditis elegans ric-8 (Synembryn) mutants activate the G{alpha}s pathway and define a third major branch of the synaptic signaling network. Genetics 169:631–649PubMedCrossRefGoogle Scholar
  141. Schaefer M, Shevchenko A, Shevchenko A, Knoblich JA (2000) A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol 10:353–362PubMedCrossRefGoogle Scholar
  142. Schaefer M, Petronczki M, Dorner D, Forte M, Knoblich JA (2001) Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107:183–194PubMedCrossRefGoogle Scholar
  143. Scott JK, Huang SF, Gangadhar BP, Samoriski GM, Clapp P, Gross RA, Taussig R, Smrcka AV (2001) Evidence that a protein-protein interaction ‘hot spot’ on heterotrimeric G protein betagamma subunits is used for recognition of a subclass of effectors. EMBO J 20:767–776PubMedCrossRefGoogle Scholar
  144. Seifert R, Hageluken A, Hoer A, Hoer D, Grunbaum L, Offermanns S, Schwaner I, Zinge V, Schunack W, Schultz G (1994) The H1 receptor agonist 2-(3-chlorophenyl) histamine activates Gi proteins in HL-60 cells through a mechanism that is independent of known histamine receptor subtypes. Mol Pharmacol 45:578–586PubMedGoogle Scholar
  145. Siderovski DP, Diverse-Pierluissi M, De Vries L (1999) The GoLoco motif: a Galphai/o binding motif and potential guanine-nucleotide exchange factor. Trends Biochem Sci 24:340–341PubMedCrossRefGoogle Scholar
  146. Smine A, Xu X, Nishiyama K, Katada T, Gambetti P, Yadav SP, Wu X, Shi YC, Yasuhara S, Homburger V, Okamoto T (1998) Regulation of brain G-protein Go by Alzheimer’s disease gene presenilin-1. J Biol Chem 273:16281–16288PubMedCrossRefGoogle Scholar
  147. Snow BE, Hall RA, Krumins AM, Brothers GM, Bouchard D, Brothers CA, Chung S, Mangion J, Gilman AG, Lefkowitz RJ, Siderovski DP (1998) GTPase activating specificity of RGS12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain. J Biol Chem 273:17749–17755PubMedCrossRefGoogle Scholar
  148. Spicer J, Ashworth A (2004) LKB1 kinase: master and commander of metabolism and polarity. Curr Biol 14:R383–R385PubMedCrossRefGoogle Scholar
  149. Srinivasan (2003) Genes Dev 17:1225PubMedCrossRefGoogle Scholar
  150. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202PubMedCrossRefGoogle Scholar
  151. Stow JL, de Almeida JB, Narula N, Holtzman EJ, Ercolani L, Ausiello DA (1991) A heterotrimeric G protein, G alpha i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells. J Cell Biol 114:1113–1124PubMedCrossRefGoogle Scholar
  152. Strader CD, Sigal IS, Dixon RA (1989) Structural basis of beta-adrenergic receptor function. FASEB J 3:1825–1832PubMedGoogle Scholar
  153. Strittmatter SM, Valenzuela D, Sudo Y, Linder ME, Fishman MC (1991) An intracellular guanine nucleotide release protein for Go. GAP-43 stimulates isolated alpha subunits by a novel mechanism. J Biol Chem 266:22465–22471PubMedGoogle Scholar
  154. Sugai M, Saito M, Sukegawa I, Katsushima Y, Kinouchi Y, Nakahata N, Shimosegawa T, Yanagisawa T, Sukegawa J (2003) PTH/PTH-related protein receptor interacts directly with Tctex-1 through its COOH terminus. Biochem Biophys Res Commun 311:24–31PubMedCrossRefGoogle Scholar
  155. Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH (1999) Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97:877–887PubMedCrossRefGoogle Scholar
  156. Takahashi H, Umeda N, Tsutsumi Y, Fukumura R, Ohkaze H, Sujino M, van der Horst G, Yasui A, Inouye ST, Fujimori A, Ohhata T, Araki R, Abe M (2003) Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Brain Res Mol Brain Res 110:1–6PubMedCrossRefGoogle Scholar
  157. Takasaki J, Saito T, Taniguchi M, Kawasaki T, Moritani Y, Hayashi K, Kobori M (2004) A novel Galphaq/11-selective inhibitor. J Biol Chem 279:47438–47445PubMedCrossRefGoogle Scholar
  158. Takesono A, Cismowski MJ, Ribas C, Bernard M, Chung P, Hazard III S, Duzic E, Lanier SM (1999) Receptor-independent activators of heterotrimeric G-protein signaling pathways. J Biol Chem 274:33202–33205PubMedCrossRefGoogle Scholar
  159. Takesono A, Nowak MW, Cismowski M, Duzic E, Lanier SM (2002) Activator of G-protein signaling 1 blocks GIRK channel activation by a G-protein-coupled receptor: apparent disruption of receptor signaling complexes. J Biol Chem 277:13827–13830PubMedCrossRefGoogle Scholar
  160. Tall GG, Krumins AM, Gilman AG (2003) Mammalian Ric-8A (synembryn) is a heterotrimeric Galpha protein guanine nucleotide exchange factor. J Biol Chem 278:8356–8362PubMedCrossRefGoogle Scholar
  161. Tomita U, Takahashi K, Ikenaka K, Kondo T, Fujimoto I, Aimoto S, Mikoshiba K, Ui M, Katada T (1991) Direct activation of GTP-binding proteins by venom peptides that contain cationic clusters within their alpha-helical structures. Biochem Biophys Res Commun 178:400–406PubMedCrossRefGoogle Scholar
  162. Toutant M, Aunis D, Bockaert J, Homburger V, Rouot B (1987) Presence of three pertussis toxin substrates and Go alpha immunoreactivity in both plasma and granule membranes of chromaffin cells. FEBS Lett 215:339–344PubMedCrossRefGoogle Scholar
  163. Traver S, Splingard A, Gaudriault G, De Gunzburg J (2004) The RGS (regulator of G-protein signalling) and GoLoco domains of RGS14 co-operate to regulate Gi-mediated signalling. Biochem J 379:627–632PubMedCrossRefGoogle Scholar
  164. Tu Y, Wu C (1999) Cloning, expression and characterization of a novel human Ras-related protein that is regulated by glucocorticoid hormone. Biochim Biophys Acta 1489:452–456PubMedGoogle Scholar
  165. Vaidyanathan G, Cismowski MJ, Wang G, Vincent TS, Brown KD, Lanier SM (2004) The Ras-related protein AGS1/RASD1 suppresses cell growth. Oncogene 23:5858–5863PubMedCrossRefGoogle Scholar
  166. Vargiu P, Morte B, Manzano J, Perez J, de Abajo R, Gregor Sutcliffe J, Bernal J (2001) Thyroid hormone regulation of rhes, a novel Ras homolog gene expressed in the striatum. Brain ResMol Brain Res 94:1–8Google Scholar
  167. Vargiu P, De Abajo R, Garcia-Ranea JA, Valencia A, Santisteban P, Crespo P, Bernal J (2004) The small GTP-binding protein, Rhes, regulates signal transduction from G protein-coupled receptors. Oncogene 23:559–568PubMedCrossRefGoogle Scholar
  168. Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ (2000) Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 275:35669–35672PubMedCrossRefGoogle Scholar
  169. Voss T, Wallner E, Czernilofsky AP, Freissmuth M (1993) Amphipathic alpha-helical structure does not predict the ability of receptor-derived synthetic peptides to interact with guanine nucleotide-binding regulatory proteins. J Biol Chem 268:4637–4642PubMedGoogle Scholar
  170. Watts VJ (2002) Molecular mechanisms for heterologous sensitization of adenylate cyclase. J Pharmacol Exp Ther 302:1–7PubMedCrossRefGoogle Scholar
  171. Webb CK, McCudden CR, Willard FS, Kimple RJ, Siderovski DP, Oxford GS (2005) D2 dopamine receptor activation of potassium channels is selectively decoupled by Galpha-specific GoLoco motif peptides. J Neurochem 92:1408–1418PubMedCrossRefGoogle Scholar
  172. Weissman JT, Ma JN, Essex A, Gao Y, Burstein ES (2004) G-protein-coupled receptor-mediated activation of rap GTPases: characterization of a novel Galphai regulated pathway. Oncogene 23:241–249PubMedCrossRefGoogle Scholar
  173. Willard FS, Kimple RJ, Siderovski DP (2004) Return of the GDI: the GoLoco motif in cell division. Annu Rev Biochem 73:925–951PubMedCrossRefGoogle Scholar
  174. Winkler DG, Johnson JC, Cooper JA, Vojtek AB (1997) Identification and characterization of mutations in Ha-Ras that selectively decrease binding to cRaf-1. J Biol Chem 272:24402–24409PubMedCrossRefGoogle Scholar
  175. Yamaguchi T, Nagahama M, Itoh H, Hatsuzawa K, Tani K, Tagaya M (2000) Regulation of the golgi structure by the alpha subunits of heterotrimeric G proteins. FEBS Lett 470:25–28PubMedCrossRefGoogle Scholar
  176. Yamaguchi Y, Katoh H, Mori K, Negishi M (2002) Galpha(12) and Galpha(13) interact with Ser/Thr protein phosphatase type 5 and stimulate its phosphatase activity. Curr Biol 12:1353–1358PubMedCrossRefGoogle Scholar
  177. Yao L, McFarland K, Fan P, Jiang Z, Inoue Y, Diamond I (2005) Activator of G protein signaling 3 regulates opiate activation of protein kinase A signaling and relapse of heroin-seeking behavior. Proc Natl Acad Sci U S A 102:8746–8751PubMedCrossRefGoogle Scholar
  178. Yu F, Morin X, Cai Y, Yang X, Chia W (2000) Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100:399–409PubMedCrossRefGoogle Scholar
  179. Zarling AL, Ficarro SB, White FM, Shabanowitz J, Hunt DF, Engelhard VH (2000) Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo. J Exp Med 192:1755–1762PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. J. Cismowski
    • 1
  • S. M. Lanier
    • 2
  1. 1.Department of Physiology and PharmacologyNortheastern Ohio Universities College of MedicineRootstownUSA
  2. 2.Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansUSA

Personalised recommendations