Advertisement

Group Formation with Heterogeneous Feasible Sets

  • Michel Le Breton
  • Shlomo Weber
Chapter
  • 313 Downloads
Part of the Studies in Economic Theory book series (ECON.THEORY, volume 25)

Summary

In this paper we consider a model of group formation where group of individuals may have different feasible sets. We focus on two polar cases, increasing returns, when the set of feasible alternatives increases if a new member joins the group, and decreasing returns, when a new member has an opposite effect and reduces the number of alternatives available for the enlarged group. We consider two notions, stability and strong stability of group structures, that correspond to Nash and Strong Nash equilibrium of the associated non-cooperative game. We prove existence results for various classes of environments and also investigate the link between dimensionality of feasible sets and the existence of stable structures.

Key words

Feasible sets Stable partitions Positive externality Increasing Returns Decreasing Returns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, R.J. (1959) “Acceptable points in general cooperative n-person games”, in Contributions to the Theory of Games, Vol. IV, Tucker, A.W. and R.D. Luce, eds., Princeton University Press, Princeton, 1959.Google Scholar
  2. 2.
    Aumann, R.J. and J. Drèze (1974) “Cooperative games with coalition structure”, International Journal of Game Theory 3, 217–237.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Banerjee, S., Konishi, H. and T. Sömnez (2001) “Core in a simple coalition formation game”, Social Choice and Welfare 18, 135–153.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Belleflamme, P. (2000) “Stable coalition structures with open membership and asymmetric firms”, Games and Economic Behavior 30, 1–21.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bernheim, D., Peleg, B. and M.D. Whinston (1987) “Coalition-proof Nash equilibria: I concepts”, Journal of Economic Theory 42, 1–12.MathSciNetGoogle Scholar
  6. 6.
    Bloch, F. (1995) “Endogenous structures of association in oligopolies”, Rand Journal of Economics, 26, 537–556.Google Scholar
  7. 7.
    Bloch, F. (1996) “Sequential formation of coalitions with fixed payoff division and externalities”, Games and Economic Behavior 14, 90–123.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bloch, F. (1997) “Non-cooperative models of coalition formation in games with spillovers, in New Directions in the Economic Theory of the Environment, Carraro, C. and D. Siniscalco, eds., Cambridge University Press, Cambridge, 1997.Google Scholar
  9. 9.
    Bogomolnaia, A. and M.O. Jackson (2002) “The stability of hedonic coalition structures”, Games and Economic Behavior 18, 201–230.MathSciNetGoogle Scholar
  10. 10.
    Deb, R., Weber, S. and E. Winter (1996) “The Nakamura theorem for coalition structures of quota games”, International Journal of Game Theory 25, 189–198.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Demange, G. (1994) “Intermediate preferences and stable coalition structures”, Journal of Mathematical Economics 23, 45–58.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Demange, G. and R. Guesnerie (1997) “Nonemptiness of the core: low multidimensional decision spaces and one-dimensional preferences”, Research in Economics 51, 7–18.CrossRefGoogle Scholar
  13. 13.
    Drèze, J. and J. Greenberg (1980) “Hedonic coalitions: optimality and stability”, Econometrica, 48, 987–1003.MathSciNetGoogle Scholar
  14. 14.
    Greenberg, J. (1979) “Consistent majority rules over compact sets of alternatives”, Econometrica 47, 627–636.zbMATHMathSciNetGoogle Scholar
  15. 15.
    Greenberg, J. (1994) “Coalition Structures”, in Handbook of Game Theory with Applications, Vol. 2, Aumann, R. and S. Hart, eds., North Holland, Amsterdam.Google Scholar
  16. 16.
    Greenberg, J. and S. Weber (1982) “The equivalence of superadditivity and balancedness in a tax proportional game”, Economic Letters 9, 113–117.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Greenberg, J. and S. Weber (1986) “Strong Tiebout equilibrium under restricted preferences domain”, Journal of Economic Theory 38, 101–117.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Greenberg, J. and S. Weber (1993) “Stable coalition structures with unidimensional set of alternatives”, Journal of Economic Theory 60, 693–703.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Greenberg, J. and S. Weber (1994) “Stable coalition structures in consecutive games”, in Frontiers in Game Theory, Binmore, K., Kirman, A. and P. Tani, eds., MIT Press, Cambridge.Google Scholar
  20. 20.
    Guesnerie, R. (1995) A Contribution to the Pure Theory of Taxation, Cambridge University Press, Cambridge.Google Scholar
  21. 21.
    Guesnerie, R. and C. Oddou (1979) “On economic games which are not necessarily superadditive”, Economic Letters 3, 301–306.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Guesnerie, R. and C. Oddou (1981) “Second best taxation as a game”, Journal of Economic Theory 25, 67–91.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Guesnerie, R. and C. Oddou (1988) “Increasing returns to size and their limits”, Scandinavian Journal of Economics 90, 259–273.Google Scholar
  24. 24.
    Kaneko, M. and M.H. Wooders (1982) “Cores of Partitioning games”, Mathematical Social Sciences 3, 313–327.MathSciNetGoogle Scholar
  25. 25.
    Konishi, H. and P.C. Fishburn (1996) ”Quasi-linear utility in a discrete choice model”, Economic Letters, 51, 197–200.CrossRefMathSciNetGoogle Scholar
  26. 26.
    Konishi, H., Le Breton, M. and S. Weber (1997a) “Pure strategy Nash equilibria in a group formation game with positive externalities”, Games and Economic Behavior 21, 161–182.CrossRefMathSciNetGoogle Scholar
  27. 27.
    Konishi, H., Le Breton, M. and S. Weber (1997b) “Free mobility equilibrium in a local public goods economy with congestion”, Research in Economics 51, 19–30.CrossRefGoogle Scholar
  28. 28.
    Konishi, H., Le Breton, M. and S. Weber (1997c) “Equivalence of strong and coalition-proof Nash equilibria in games without spillovers”, Economic Theory 9, 97–113.MathSciNetGoogle Scholar
  29. 29.
    Konishi, H., Le Breton, M. and S. Weber (1997d) “Equilibrium in a model with partial rivalry”, Journal of Economic Theory 72, 225–237.CrossRefMathSciNetGoogle Scholar
  30. 30.
    Konishi, H., Le Breton, M. and S. Weber (1997e) “Group formation in games without spillovers: a noncooperative game-theoretical approach”, in New Directions in the Economic Theory of the Environment, Carraro, C. and D. Siniscalco, eds., Cambridge University Press, Cambridge.Google Scholar
  31. 31.
    Konishi, H., Le Breton, M. and S. Weber (1998) “Equilibrium in a finite local public goods economy”, Journal of Economic Theory 79, 224–244.CrossRefMathSciNetGoogle Scholar
  32. 32.
    Le Breton, M (1987) “On the core of voting games”, Social Choice and Welfare 4, 295–305.zbMATHMathSciNetGoogle Scholar
  33. 33.
    Le Breton, M. (1989) “A note on balancedness and nonemptiness of the core of voting games”, International Journal of Game Theory 18, 111–117.CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Le Breton, M., Owen, G. and S. Weber (1992) “Strongly balanced cooperative games”, International Journal of Game Theory 20, 419–427.CrossRefMathSciNetGoogle Scholar
  35. 35.
    Le Breton, M. and S. Weber (1995) “Stability of coalition structures and the principle of optimal partitioning”, in Social Choice, Welfare and Ethics, Barnett, W., Moulin, H., Salles, M. and N. Schofield, eds., Cambridge University Press, Cambridge.Google Scholar
  36. 36.
    Milchtaich, I. (1996) “Congestion games with player-specific payoff functions”, Games and Economic Behavior 13, 124–143.CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Milchtaich, I. and E. Winter (2002) “Stability and segregation in group formation”, Games and Economic Behavior 38, 318–346.CrossRefMathSciNetGoogle Scholar
  38. 38.
    Monderer, D. and L.S. Shapley (1996) “Potential games”, Games and Economic Behavior 14, 124–143.MathSciNetGoogle Scholar
  39. 39.
    Nakamura, K. (1979) “The vetoers in a simple game with ordinal preferences”, International Journal of Game Theory, 8, 55–61.CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Ray, D. and R. Vohra (2001) “Coalitional power and public goods”, Journal of Political Economy 109, 1355–1384.CrossRefGoogle Scholar
  41. 41.
    Rosenthal, R.W. (1973) “A class of games possessing a pure-strategy Nash equilibrium”, International Journal of Game Theory 2, 65–67.CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Schofield, N. (1984) “Social equilibrium and cycles on compact sets”, Journal of Economic Theory 33, 59–71.CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Strnad, J. (1985) “The structure of continuous-valued neutral monotonic social choice functions”, Social Choice and Welfare 2, 181–195.CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Weber, S. and S. Zamir (1985) “Proportional taxation: nonexistence of stable structures in an economy with a public good”, Journal of Economic Theory 35, 178–185.CrossRefGoogle Scholar
  45. 45.
    Yi, S.S. (1997) “Stable coalition structures with externalities”, Games and Economic Behavior 20, 201–237.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michel Le Breton
    • 1
  • Shlomo Weber
    • 2
    • 3
  1. 1.GREMAQ and IDEIUniversité de Toulouse IToulouseFrance
  2. 2.Department of EconomicsSouthern Methodist UniversityDallasUSA
  3. 3.CORECatholic University of Louvain-la-NeuveBelgium

Personalised recommendations