On Behavioral Heterogeneity

  • Werner Hildenbrand
  • Alois Kneip
Part of the Studies in Economic Theory book series (ECON.THEORY, volume 25)


An index of “behavioral heterogeneity” for every finite population of households is defined. It is shown that the higher the index of behavioral heterogeneity the less sensitive depends the aggregate consumption expenditure ratio upon prices. As a consequence, a high index implies a tendency for the Jacobian of aggregate demand to have a dominant negative diagonal.

Key words

Aggregation Behavioral heterogeneity Mean demand 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreu, J.: Rationalization of market demand on finite domains. Journal of Economic Theory 28, 201–204 (1982)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chiappori, P.A., Ekeland, I.: Problèmes d’agrégation en théorie du consommateur et calcul différentiel extérieur. C.R.A.S. Paris 323, 565–570 (1996)MathSciNetGoogle Scholar
  3. 3.
    Dierker, E., Dierker, H., Trockel, W.: Price-dispersed preferences and C1 mean demand. Journal of Mathematical Economics 13, 11–42 (1984)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Giraud, G., Maret, I.: Behavioral heterogeneity in large economies. University of Strasbourg, BETA, Discussion Paper 2002-04 (2002)Google Scholar
  5. 5.
    Grandmont, J.M.: Transformations of the commodity space, behavioral heterogeneity, and the aggregation problem. Journal of Economic Theory 57, 1–35 (1992)zbMATHGoogle Scholar
  6. 6.
    Härdle, W., Hildenbrand, W., Jerison, M.: Empirical evidence on the law of demand. Econometrica 59, 1525–1549 (1991)Google Scholar
  7. 7.
    Hildenbrand, W.: On the law of demand. Econometrica 51, 997–1019 (1983)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Hildenbrand, K., John, R.: On parametrization in modelling behavioral heterogeneity. University of Copenhagen, Institute of Economics, Discussion Paper 03-27 (2003)Google Scholar
  9. 9.
    Jerison, M.: Dispersed excess demands, the weak axiom and uniqueness of equilibrium. Journal of Mathematical Economics 31, 15–48 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kneip, A.: Behavioral heterogeneity and structural properties of aggregate demand. Journal of Mathematical Economics 31, 49–79 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Mas-Colell, A., Neuefeind, W.: Some generic properties of aggregate excess demand and an application. Econometrica 45, 591–599 (1977)MathSciNetGoogle Scholar
  12. 12.
    Mitjuschin, L.G., Polterovich, W.M.: Criteria for monotonicity of demand functions. Ekonomika i Matematicheski Metody 14, 122–128 (1978)Google Scholar
  13. 13.
    Quah, J.: The law of demand when income is price dependent. Econometrica 65, 1421–1442 (1997)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Quah, J.: Demand is heterogeneous in Grandmont’s model. Nuffield College Working Paper, W12 (2001)Google Scholar
  15. 15.
    Sonnenschein, H.: Do Walras’ identity and continuity characterize the class of community excess demand functions? Journal of Economic Theory 6, 345–354 (1973)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Varian, H.R.: Additive utility and gross substitutes. Unpublished manuscript (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Werner Hildenbrand
    • 1
  • Alois Kneip
    • 2
  1. 1.Universität BonnBonnGermany
  2. 2.Universität MainzMainzGermany

Personalised recommendations