Skip to main content

Perturbation Technique in 3D Cloud Optics: Theory and Results

  • Conference paper
Computational Methods in Transport

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 48))

  • 1396 Accesses

Abstract

It is well known that generally to simulate accurately radiative transfer through a realistic cloudy atmosphere one should use numerical approaches such as Monte Carlo [12], or SHDOM [3]. However, it is usually required too much time to make a simulation which is inconvenient when just we need an answer on a simple question like how significant the 3D effects are for a given problem. The perturbation method is what comes to mind first if we need to go further into modelling of the radiative transfer through cloud atmosphere starting from the simplest framework of one dimensional radiative transfer [2, 8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Box, B. Croke, S. A. W. Gerstl, and C. Simmer. Application of the perturbation theory for atmospheric radiative effects: Aerosol scattering atmospheres. Beitr. Phys. Atmosph, 62:200–211, 1989.

    Google Scholar 

  2. S. Chandrasekhar. Radiative Transfer. Oxford University Press, 1950 (Reprinted by Dover, New York, 1960).

    Google Scholar 

  3. K. F. Evans. The spherical harmonics discrete ordinate method for threedemensional atmospheric radiative transfer. J. Atmos. Sci., 55:429–446, 1998.

    Article  Google Scholar 

  4. V. L. Galinsky and V. Ramanathan. 3D radiative transfer in weakly inhomogeneous medium. Part I: Diffusive approximation. J. Atmos. Sci., 55:2946–2959, 1998.

    Article  Google Scholar 

  5. V. L. Galinsky. 3D radiative transfer in weakly inhomogeneous medium. Part II: Discrete ordinate method and effective algorithm for its inversion. J. Atmos. Sci., 57:1635–1645, 2000.

    Article  Google Scholar 

  6. A. Ishimaru. Wave Propagation and Scattering in Random Media. Academic Press, New York, 1978.

    MATH  Google Scholar 

  7. J. Landgraf, O. P. Hasekamp, M.A. Box, and T. Trautmann. A linearized radiative transfer model for ozone profile retrieval using the analytical forwardadjoint perturbation theory approach. J. Geophys. Res., 106:27291–27305, 2001.

    Article  Google Scholar 

  8. J. Lenoble, editor. Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. A.Deepak, Publishing, Hampton, Va., USA, 1985.

    Google Scholar 

  9. J. Li, J. W. Geldart, and P. Chýlek. Perturbation solution for 3D radiative transfer in a horizontally periodic inhomogeneous cloud field. J. Atmos. Sci., 51:2110–2122, 1994.

    Article  Google Scholar 

  10. J. Li, J. W. Geldart, and P. Chýlek. Second order perturbation solution for radiative transfer in clouds with a horizontally arbitrary periodic inhomogeneity. J. Quant. Spectrosc. Radiat. Transfer, 53:445–456, 1995.

    Article  Google Scholar 

  11. A. I. Lyapustin and Y. Knyazikhin. Green’s function method in the radiative transfer roblem. II. spatially heterogeneous anisotropic surface. Appl. Opt., 41 (27):5600–5606, 2002.

    Google Scholar 

  12. G. Marchuk, G. Mikhailov, M. Nazarliev, R. Darbinjan, B. Kargin, and B. Elepov. The Monte-Carlo Methods in Atmospheric Optics. Springer-Verlag, Heidelberg, 1980.

    Google Scholar 

  13. G. I. Marchuk. Equation for the value of information from weather satellite and formulation of inverse problems. Kosmicheskie Issledovaniya, 2:462–477, 1964.

    Google Scholar 

  14. P. M. Morse and H. Feshbach. Methods of Theoretical Physics. McGraw-Hill book Company, New York, Toronto, London, 1952.

    MATH  Google Scholar 

  15. I. N. Polonsky and M. A. Box. Perturbation technique to retrieve scattering medium stratification. J. Atmos. Sci, 59:758–768, 2002.

    Article  Google Scholar 

  16. I. N. Polonsky, M. A. Box, and A. Davis. Radiative transfer through inhomogeneous turbid media: Implementation of the adjoint perturbation approach at the first order. J. Quant. Spect. Rad. Tran., 78(1):85–98, 2003.

    Article  Google Scholar 

  17. G.C. Pomraning. A variational principle for linear systems. J. Soc. Indust. Appl. Math., 13(2):511–519, 1965.

    Article  MathSciNet  Google Scholar 

  18. E. A. Ustinov. The inverse problem of the photometry of solar radiation re- .ected by an optically thick planetary atmosphere. Mathematical methods and weighting functions of linearized inverse problem. Kosmicheskie Issledovaniya, 29:604–620, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Polonsky, I.N., Davis, A.B., Box, M.A. (2006). Perturbation Technique in 3D Cloud Optics: Theory and Results. In: Graziani, F. (eds) Computational Methods in Transport. Lecture Notes in Computational Science and Engineering, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28125-8_8

Download citation

Publish with us

Policies and ethics