Skip to main content

Effective Propagation Kernels in Structured Media with Broad Spatial Correlations, Illustration with Large-Scale Transport of Solar Photons Through Cloudy Atmospheres

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 48))

Abstract

It is argued that, to directly target the mean fluxes through a structured medium with spatial correlations over a significant range of scales that includes the mean-free-path, one can use an effective propagation kernel that will necessarily be sub-exponential. We come to this conclusion using both standard transport theory for variable media and a point-process approach developed recently by A. Kostinski. The ramifications of this finding for multiple scattering and effective medium theory are examined. Finally, we describe a novel one-dimensional transport theory with asymptotically power-law propagation kernels and use it to shed new light onto recent observations of solar photon pathlength in the Earth’s cloudy atmosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Mihalas. Stellar Atmospheres. Freeman, San Francisco (CA), 2nd edition, 1979.

    Google Scholar 

  2. O.A. Avaste and G.M. Vainikko. Solar radiative transfer in broken clouds. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 10:1054–1061, 1974.

    Google Scholar 

  3. G.C. Pomraning. Linear Kinetic Theory and Particle Transport in Stochastic Mixtures. World Scientific Publishing, Singapore, 1991.

    MATH  Google Scholar 

  4. G.L. Stephens. Radiative transfer through arbitrary shaped optical media, II: Group theory and simple closures. J. Atmos. Sci., 45:1837–1848, 1988.

    Article  Google Scholar 

  5. H.W. Barker. A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds – Part 1, Methodology and homogeneous biases. J. Atmos. Sci., 53:2289–2303, 1996.

    Article  Google Scholar 

  6. H.W. Barker and A.B. Davis. Approximation methods in atmospheric 3D radiative transfer, Part 2: Unresolved variability and climate applications. In 3D Radiative Transfer in Cloudy Atmospheres. A. Marshak and A.B. Davis (eds.). Springer-Verlag, Heidelberg, pages 343–383, 2005.

    Google Scholar 

  7. F. Graziani and D. Slone. Radiation transport in 3D heterogeneous materials: Direct numerical simulation. In Proceedings of the American Nuclear Society Winter Meeting, New Orleans, LA. ANS, LaGrange Park (IL), 2003.

    Google Scholar 

  8. R.F. Cahalan. Bounded cascade clouds: Albedo and effective thickness. Nonlinear Proc. Geophys., 1:156–167, 1994.

    Article  Google Scholar 

  9. B. Cairns, A.A. Lacis, and B.E. Carlson. Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57:700–714, 2000.

    Article  Google Scholar 

  10. P.M. Gabriel and K.F. Evans. Simple radiative transfer methods for calculating domain-averaged solar fluxes in inhomogeneous clouds. J. Atmos. Sci., 53:858–877, 1996.

    Article  Google Scholar 

  11. G.W. Petty. Area-average solar radiative transfer in three-dimensionally inhomogeneous clouds: The independently scattering cloudlets model. J. Atmos. Sci., 59:2910–2929, 2002.

    Article  Google Scholar 

  12. M.F. Shlesinger, G.M. Zaslavsky, and U. Frisch (eds.). Lévy Flights and Related Topics in Physics. Springer-Verlag, New York (NY), 1995.

    MATH  Google Scholar 

  13. G. Samorodnitsky and M.S. Taqqu. Stable Non-Gaussian Random Processes. Chapman and Hall, New York (NY), 1994.

    MATH  Google Scholar 

  14. K. Pfeilsticker. First geometrical pathlengths probability density function derivation of the skylight from spectroscopically highly resolving oxygen Aband observations. 2. Derivation of the Lévy-index for the skylight transmitted by mid-latitude clouds. J. Geophys. Res., 104:4101–4116, 1999.

    Article  Google Scholar 

  15. T. Scholl, K. Pfeilsticker, A.B. Davis, H. Klein Baltink, S. Crewell, U. Löhnert, C. Simmer, J. Meywerk, and M. Quante. Path length distributions for solar photons under cloudy skies: Comparison of measured first and second moments with predictions from classical and anomalous diffusion theories. J. Geophys. Res., 2005 (in press).

    Google Scholar 

  16. A.B. Davis and Yu. Knyazikhin. A Primer in 3D Radiative Transfer. In 3D Radiative Transfer in Cloudy Atmospheres. A. Marshak and A.B. Davis (eds.). Springer-Verlag, Heidelberg, pages 153–242, 2005.

    Google Scholar 

  17. D. Deirmendjian. Electromagnetic Scattering on Spherical Polydispersions. Elsevier, New York (NY), 1969.

    Google Scholar 

  18. Yu. Knyazikhin, A. Marshak, W.J. Wiscombe, J. Martonchik, and R.B. Myneni. A missing solution to the transport equation and its effect on estimation of cloud absorptive properties. J. Atmos. Sci., 59:3572–3585, 2002.

    Article  Google Scholar 

  19. M. Abramowitz and I.A. Stegun (eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. US Govt. Printing Office, Washington (DC), 1964.

    Google Scholar 

  20. L.C. Henyey and J.L. Greenstein. Diffuse radiation in the galaxy. Astrophys. J., 93:70–83, 1941.

    Article  Google Scholar 

  21. A. Davis, S. Lovejoy, and D. Schertzer. Supercomputer simulation of radiative transfer in multifractal cloud models.In IRS’92 : Current Problems in Atmospheric Radiation. S. Keevallik and O. Kärner (eds.). A. Deepak Publishing, Hampton (VA), pages 112–115, 1993.

    Google Scholar 

  22. A. Schuster. Radiation through a foggy atmosphere. Astrophys. J., 21:1–22, 1905.

    Article  Google Scholar 

  23. W.E. Meador and W.R.Weaver. Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37:630–643, 1980.

    Article  Google Scholar 

  24. N.G. van Kampen. Stochastic differential equations. Physics Reports (Phys. Lett. C), 24:171–228, 1976.

    MathSciNet  Google Scholar 

  25. F. Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York (NY), 1965.

    Google Scholar 

  26. A.B. Kostinski. On the extinction of radiation by a homogeneous but spatially correlated random medium. J. Opt. Soc. Amer. A, 18:1929–1933, 2001.

    Google Scholar 

  27. A.B. Davis and A. Marshak. Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean-free-paths and wider-thanexponential free-path distributions. J. Quant. Spectrosc. Radiat. Transfer, 84:3–34, 2004.

    Article  Google Scholar 

  28. W. Feller. An Introduction to Probability Theory and its Applications. Wiley, New York (NY), 1971.

    MATH  Google Scholar 

  29. U. Frisch and G. Parisi. A multifractal model of intermittency. In Turbulence and Predictability in Geophysical Fluid Dynamics, M. Ghil, R. Benzi, and G. Parisi (eds.), North Holland, Amsterdam (The Netherlands), pages 84–88, 1985.

    Google Scholar 

  30. A. Marshak, A. Davis, W.J. Wiscombe, and R.F. Cahalan. Scale-invariance of liquid water distributions in marine stratocumulus, Part 2 – Multifractal properties and intermittency issues. J. Atmos. Sci., 54:1423–1444, 1997.

    Article  Google Scholar 

  31. H.-O. Peitgen and D. Saupe. The Science of Fractal Images. Springer-Verlag, New York (NY), 1988.

    MATH  Google Scholar 

  32. R.F. Cahalan, W. Ridgway, W.J. Wiscombe, T.L. Bell, and J.B. Snider. The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51:2434–2455, 1994.

    Article  Google Scholar 

  33. H.W. Barker, J.-J. Morcrette, and G.D. Alexander. Broadband solar fluxes and heating rates for atmospheres with 3D broken clouds. Quart. J. Roy. Meteor. Soc., 124:1245–1271, 1998.

    Article  Google Scholar 

  34. J.W. Goodman. Statistical Optics. Wiley, New York (NY), 1985.

    Google Scholar 

  35. L.D. Landau and E.M. Lifshitz. Statistical Physics. Pergamon, New York (NY), 3rd edition, 1980.

    Google Scholar 

  36. L. Mandel and E. Wolf. Optical Coherence and Quantum Optics. Cambridge U. Press, New York (NY), 1995.

    Google Scholar 

  37. H.W. Barker, B.A. Wielicki, and L. Parker. A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds – Part 2, Validation using satellite data. J. Atmos. Sci., 53:2304–2316, 1996.

    Article  Google Scholar 

  38. A. Marshak, A. Davis, W.J. Wiscombe, and R.F. Cahalan. Radiative smoothing in fractal clouds. J. Geophys. Res., 100:26,247–26,261, 1995.

    Google Scholar 

  39. R.A. Shaw, A.B. Kostinski, and D.D. Lanterman. Super-exponential extinction of radiation in a negatively-correlated random medium. J. Quant. Spectrosc. Radiat. Transfer, 75:13–20, 2002.

    Article  Google Scholar 

  40. A. Davis and A. Marshak. Lévy kinetics in slab geometry: Scaling of transmission probability. In Fractal Frontiers. M.M. Novak and T.G. Dewey (eds.). World Scientific, Singapore, pages 63–72, 1997.

    Google Scholar 

  41. A.G. Borovoi. On the extinction of radiation by a homogeneous but spatially correlated random medium: Comment. J. Opt. Soc. Amer. A, 19:2517–2520, 2002.

    Google Scholar 

  42. A.G Borovoi. Radiative transfer in inhomogeneous media. Dokl. Akad. Nauk SSSR, 276:1374–1378, 1984 (in Russian).

    Google Scholar 

  43. A.B. Kostinski. On the extinction of radiation by a homogeneous but spatially correlated random medium: Reply to comment. J. Opt. Soc. Amer. A, 19:2521–2525, 2002.

    Google Scholar 

  44. E.P. Zege, A.P. Ivanov, and I.L. Katsev. Image Transfer Through a Scattering Medium. Springer-Verlag, New York (NY), 1991.

    Google Scholar 

  45. K.M. Case and P.F. Zweifel. Linear Transport Theory. Addison-Wesley, Reading (MA), 1967.

    MATH  Google Scholar 

  46. E. Sparre Anderson. On the fluctuations of sums of random variables. Math Scand., 1:236–285, 1953.

    Google Scholar 

  47. U. Frisch and H. Frisch. Universality in escape from half space of symmetrical random walks. In Lévy Flights and Related Topics in Physics, M.F. Shlesinger, G.M. Zaslavsky, and U. Frisch (eds.), Springer-Verlag, New York (NY), pages 262–268, 1995.

    Google Scholar 

  48. G.L. Stephens. Reply (to Harshvardhan and Randall). Mon. Wea. Rev., 113:1834–1835, 1985.

    Article  Google Scholar 

  49. G.L. Stephens, A.K. Heidinger, and P.M. Gabriel. Photon paths and cloud heterogeneity: An observational strategy to assess effects of 3D geometry on radiative transfer. In 3D Radiative Transfer in Cloudy Atmospheres. A. Marshak and A.B. Davis (eds.). Springer-Verlag, Heidelberg, pages 587–616, 2005.

    Google Scholar 

  50. W.M. Irvine. The formation of absorption bands and the distribution of photon optical paths in a scattering atmosphere. Bull. Astron. Inst. Neth., 17:226–279, 1964.

    Google Scholar 

  51. V.V. Ivanov and Sh. A. Sabashvili. Transfer of resonance radiation and photon random walks. Astrophysics and Space Science, 17:13–22, 1972.

    Article  Google Scholar 

  52. K. Pfeilsticker, F. Erle, O. Funk, H. Veitel, and U. Platt. First geometrical pathlengths probability density function derivation of the skylight from spectroscopically highly resolving oxygen A-band observations: 1. Measurement technique, atmospheric observations, and model calculations. J. Geophys. Res., 103:11,483–11,504, 1998.

    Google Scholar 

  53. Q.-L. Min and L.C. Harrison. Joint statistics of photon pathlength and cloud optical depth. Geophys. Res. Lett., 26:1425–1428, 1999.

    Article  Google Scholar 

  54. Q.-L. Min, L.C. Harrison, P. Kiedron, J. Berndt, and E. Joseph. A highresolution oxygen A-band and water vapor band spectrometer. J. Geophys. Res., 109:D02202, doi:10.1029/2003JD003540, 2004.

    Google Scholar 

  55. Q.-L. Min, L.C. Harrison, and E.E. Clothiaux. Joint statistics of photon pathlength and cloud optical depth: Case studies. J. Geophys. Res., 106:7375–7385, 2001.

    Article  Google Scholar 

  56. R.W. Portmann, S. Solomon, R.W. Sanders, J.S. Daniel, and E. Dutton. Cloud modulation of zenith sky oxygen path lengths over Boulder, Colorado: Measurement versus model. J. Geophys. Res., 106:1139–1155, 2001.

    Article  Google Scholar 

  57. M. Quante, H. Lemke, H. Flentje, P. Francis, and J. Pelon. Boundaries an internal structure of mixed phased clouds as deduced from ground-based 95- Ghz radar and airborne lidar measurements. Phys. Chem. Earth, 25:889–895, 2000.

    Google Scholar 

  58. A.B. Davis and A. Marshak. Space-time characteristics of light transmitted through dense clouds: A Green function analysis. J. Atmos. Sci., 59:2714–2728, 2002.

    Article  Google Scholar 

  59. W.J. Wiscombe and G.W. Grams. The backscattered fraction in two-stream approximations. J. Atmos. Sci., 33:2440–2451, 1976.

    Article  Google Scholar 

  60. J. Lenoble (ed.). Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. A. Deepak Publishing, Hampton (VA), 1985.

    Google Scholar 

  61. S.V. Buldyrev, M. Gitterman, S. Havlin, A.Ya. Kazakov, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, and G.M. Viswanathan. Properties of Lévy flights on an interval with absorbing boundaries. Physica A, 302:148–161, 2001.

    Article  MATH  Google Scholar 

  62. G. Marchuk, G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin, and B. Elepov. The Monte Carlo Methods in Atmospheric Optics. Springer-Verlag, New York (NY), 1980.

    Google Scholar 

  63. H.C. van de Hulst. Multiple Light Scattering: Tables, Formulae and Applications. Academic Press, San Diego (CA), 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Davis, A.B. (2006). Effective Propagation Kernels in Structured Media with Broad Spatial Correlations, Illustration with Large-Scale Transport of Solar Photons Through Cloudy Atmospheres. In: Graziani, F. (eds) Computational Methods in Transport. Lecture Notes in Computational Science and Engineering, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28125-8_5

Download citation

Publish with us

Policies and ethics