Skip to main content

Rayspread: A Virtual Laboratory for Rapid BRF Simulations Over 3-D Plant Canopies

  • Conference paper
Computational Methods in Transport

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 48))

Abstract

Accurate knowledge of the spatial (and temporal) variability of the biosphere’s characteristics is useful not only to address critical scientific issues (climate change, environmental degradation, biodiversity preservation, etc.) but also to provide appropriate initial state and boundary conditions for general circulation or landscape succession models. In particular, the 3-D structure of vegetation emerged as a crucial player in processes affecting carbon sequestration, landscape dynamics and the exchanges of energy, water and trace gases with the atmosphere e.g., [BWG04]. The growth and development of plant architecture, in turn, are primarily conditioned by effective interception of solar radiation that provides the necessary energy for photosynthesis and other physiological processes [VB86].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antyufeev, V. S., Marshak, A. L.: Monte Carlo method and transport equation in plant canopies. Remote Sensing of Environment, 31, 183–191, (1990)

    Article  Google Scholar 

  • Baldocchi, D. D., Wilson, K. B., Gu L.: Influences of structural and functional complexity on carbon, water and energy fluxes of temperate broadleaved deciduous forest. Tree Physiology, 22, 1065–1077, (2002)

    Google Scholar 

  • Bunnik, N. J. J.: The Multispectral Reflectance of Shortwave Radiation of Agricultural Crops in Relation With Their Morphological and Optical Properties. Mededelingen Landbouwhogeschool, Wageningen, The Netherlands (1978)

    Google Scholar 

  • Chandrasekhar, S.: Radiative Transfer, Dover Publications, Inc., New York, (1960)

    MATH  Google Scholar 

  • Chopping, M. J., Rango, A., Havstad, K. M., Schiebe, F. R., Ritchie, J. C., Schmugge, T. J., French, A. N., Su, L., McKee, L., Davis, R.: Canopy attributes of desert grasslands and transition communities derived from multi-angular airborne imagery. Remote Sensing Environment, 85, 339–354, (2003)

    Article  Google Scholar 

  • Davis, A. B., Marshak, A.: Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean free-paths and widerthan- exponential free-path distributions. Journal of Quantitative Spectroscopy and Radiative Trannsfer, 84, 3–34, (2004)

    Article  Google Scholar 

  • Devroye, L.: Non-Uniform Random Variate Generation. Springer-Verlag, New York (1986)

    MATH  Google Scholar 

  • Disney, M. I., Lewis, P., North, P. R. J.: Monte Carlo Raytracing in Optical Canopy Reflectance Modelling, Remote Sensing Review, 18, 163–196, (2000)

    Google Scholar 

  • Gerstl, S. A. W.: Angular Reflectance Signature of the Canopy Hotspot in the Optical Regime, In: The 4th International Colloquium On Spectral Signatures of Objects in Remote Sensing, Aussois, France, ESA report SP-287, (1988)

    Google Scholar 

  • Gobron, N., Pinty, B., Verstraete, M. M., Govaerts, Y.: A Semi-Discrete Model for the Scattering of Light by Vegetation, Journal of Geophysical Research, 102, 9431–9446, (1997)

    Article  Google Scholar 

  • Goel, N. S., Strebel, D. E.: Inversion of Vegetation Canopy Reflectance Models for Estimating Agronomic Variables. I. Problem Definition and Initial Results Using Suits Model. Remote Sensing of Environment, 13, 487–507, (1983)

    Google Scholar 

  • Goel, N. S., Strebel, D. E.: Simple Beta Distribution Representation of Leaf Orientation in Vegetation Canopies. Agronomy Journal, 76, 800–803, (1984)

    Article  Google Scholar 

  • Goel, N. S., Qin, W., Wang, B.: On the estimation of leaf size and crown geometry for tree canopies from hotspot observations. Journal of Geophysical Research, 102, 29,543–29,554, (1997)

    Google Scholar 

  • Govaerts, Y., Verstraete, M. M.: Devellopment and parallelization of a Monte Carlo ray tracing code for radiative transfer modelling: Initial lessons from using the Cenju-3 machine. Speedup Journal, 10, 62–67, (1996)

    Google Scholar 

  • Govaerts, Y., Verstraete, M. M.: Raytran: A Monte Carlo Ray Tracing Model to Compute Light Scattering in Three-Dimensional Heterogeneous Media. IEEE Transactions on Geoscience and Remote Sensing, 36, 493–505, (1998)

    Article  Google Scholar 

  • Hapke, B.: Bidirectional Reflectance Spectroscopy. I. Theory. Journal of Geophysical Research, 86, 3039–3054, (1981)

    Google Scholar 

  • Kimes, D. S., Knyazikhin, Y., Privette, J. L., Abuelgasim, A. A., Gao, F.: Inversion Methods for Physically-Based Models, Remote Sensing Review, 18, 381–439, (2000)

    Google Scholar 

  • Kuusk, A.: he Hot Spot Effect in Plant Canopy Reflectance, In: Photon- Vegetation Interactions, Springer-Verlag, New York, (1991)

    Google Scholar 

  • Lovell, J. L., Graetz, R. D.: Analysis of POLDER-ADEOS data for the Australian continent: the relationship between BRDF and vegetation structure. International Journal of Remote Sensing, 23, 2767–2796, (2002)

    Article  Google Scholar 

  • Marshak, A. L.: The Effect of the Hot Spot on the Transport Equation in Plant Canopies. Journal of Quantitative Spectroscopy and Radiation Transfer, 42, 615–630, (1989)

    Article  Google Scholar 

  • Meerkoetter, R.: Reflection functions for inhomogeneous land surfaces. Applied Optics, 29, 4192–4198, (1989)

    Article  Google Scholar 

  • Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., Limperis, T.: Geometrical Considerations and Nomenclature for Reflectance, National Bureau of Standards, U.S. Department of Commerce, Washington, DC, NBS Monograph, 160, (1977)

    Google Scholar 

  • Pinty, B., Verstraete, M. M.: Modeling the scattering of light by vegetation in optical remote sensing. Journal of the Atmospheric Sciences, 55, 137–150 (1997)

    Article  Google Scholar 

  • Pinty, B., Widlowski, J.-L., Gobron, N. Verstraete, M. M.: Uniqueness of Multi-angular Information – Part 1: A Surface Heterogeneity Indicator from MISR, IEEE Transactions on Geoscience and Remote Sensing, 40, 1560–1573, (2002)

    Article  Google Scholar 

  • Pinty, B., Widlowski, J.-L., Taberner, M., Gobron, N., Verstraete, M. M., Disney, M., Gascon, F., Gastellu, J.-P., Jiang, L., Kuusk, A., Lewis, P., Li, X., Ni-Meister, W., Nilson, T., North, P., Qin, W., Su, L., Tang, R., Thompson, R., Verhoef, W., Wang, H., Wang, J., Yan, G., Zang, H.: The RAdiation transfer Model Intercomparison (RAMI) Exercise: Results from the Second Phase, Journal of Geophysical Research, 109, D06210, doi:10.1029/2004JD004252

    Google Scholar 

  • Pinty, B., Gobron, N., Widlowski, J.-L., Lavergne, T., Verstraete, M. M.: Synergy between 1-D and 3-D radiation transfer models to retrieve vegetation canopy properties from remote sensing data. Journal of Geophysical Research, 109, D21205, doi:10.1029/2004JD005214, (2004)

    Article  Google Scholar 

  • Qin, W., Xiang, Y.: On the hotspot effect of leaf canopies: Modeling study and Influence of leaf shape. Remote Sensing of the Environment, 50, 95–106, (1994)

    Article  Google Scholar 

  • Rahman, H., Pinty, B., Verstraete, M. M.: Coupled Surface-Atmosphere Reflectance (CSAR) Model. 1. Model Description and Inversion on Synthetic Data. Journal of Geophysical Research, 98, 20,779–20,789, (1993)

    Google Scholar 

  • Ross, J.: The Radiation Regime and Architecture of Plant Stands, W. Junk, Boston (1981)

    Google Scholar 

  • Shultis, J. K., Myneni, R. B.: Radiative Transfer in Vegetation Canopies With Anisotropic Scattering. Journal of Quantitative Spectroscopy and Radiation Transfer, 39, 115–129, (1988)

    Article  Google Scholar 

  • Spanier, J., Gelbard, E. M.: Monte Carlo principles and Neutron Transport Problems. Addison-Wesley, Reading, (1969)

    MATH  Google Scholar 

  • Stenberg, P., Kuuluvainen, T., Kellomaeki, T., Grace, J. C., Jokela, E. J., Gholz, H. L.: Crown structure, light interception and productivity of pine trees and stands, In: A comparative analysis of pine forest productivity, Ecological Bulletins (43), Copenhagen, (1994)

    Google Scholar 

  • Steven, M. D.: Standard distributions of clear sky radiance. Quarterly Journal of the Royal meteorological Society, 103, 457–465.

    Google Scholar 

  • Strebel, D. E., Goel, N. S., Ranson, K. J.: Two-dimensional Leaf Orientation Distributions. IEEE Transactions on Geoscience and Remote Sensing, 23, 640–647, (1985)

    Google Scholar 

  • Thompson, R. L., Goel, N. S.: Two Models for Rapidly Calculating Bidirectional Reflectance: Photon Spread (PS) Model and Statistical Photon Spread (SPS) Model, Remote Sensing Reviews, 16, 157–207, (1998)

    Google Scholar 

  • Torrance, K. E., Sparrow, E. M.: Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America, 57, 916–925, (1967)

    Article  Google Scholar 

  • Verstraete, Michel M.: Radiation Transfer in Plant Canopies: Transmission of Direct Solar Radiation and the Role of Leaf Orientation. Journal of Geophysical Research, 92, 10,985–10,995, (1987)

    Article  Google Scholar 

  • Verstraete, M. M., Pinty, B., Dickinson, R. E.: A Physical Model of the Bidirectional Reflectance of Vegetation Canopies. 1. Theory. Journal of Geophysical Research, 95, 10,985–10,995

    Google Scholar 

  • Verstraete, M. M., Pinty, B., Myneni, R. B.: Potential and Limitations of Information Extraction on the Terrestrial Biosphere From Satellite Remote Sensing, Remote Sensing of Environment, 58, 201–214, (1996)

    Article  Google Scholar 

  • Vogelmann, T. C., Bjorn, L. O.: Plants as light traps. Physiol. plant. 68, 704–708, (1986)

    Article  Google Scholar 

  • Widlowski, J-L., Pinty, B., Gobron, N., Verstraete, M. M., Davies, A. B.: Characterization of Surface Heterogeneity Detected at the MISR/TERRA Subpixel Scale, Geophysical Research Letters, 28, 4639–4642, (2001)

    Article  Google Scholar 

  • Widlowski, J-L., Verstraete, M. M., Pinty, B., Gobron, N.: Allometric Relationships of Selected European Tree Species, EC Joint Research Centre, Technical Report EUR 20855 EN, Ispra, Italy, (2003)

    Google Scholar 

  • Widlowski, J-L., Pinty, B., Gobron, N., Verstraete, M. M., Diner, D. J., Davies, A. B.: Canopy Structure Parameters Derived from Multi-angular Remote Sensing Data for Terrestrial Carbon Studies, Climatic Change, 67, 403–415, (2004)

    Article  Google Scholar 

  • Zeng, X., Shaikh, M., Dai, Y., Dickinson, R. E., Myneni, R. B.: Coupling of the Common Land Model to the NCAR Community Climate Model, Journal of Climate, 15, 1832–1854, (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Widlowski, JL., Lavergne, T., Pinty, B., Verstraete, M., Gobron, N. (2006). Rayspread: A Virtual Laboratory for Rapid BRF Simulations Over 3-D Plant Canopies. In: Graziani, F. (eds) Computational Methods in Transport. Lecture Notes in Computational Science and Engineering, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28125-8_10

Download citation

Publish with us

Policies and ethics