Skip to main content

Pathophysiology and Pharmacology of GABAA Receptors

  • Chapter
Anxiety and Anxiolytic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 169))

Abstract

By controlling spike timing and sculpting neuronal rhythms, inhibitory interneurons play a key role in brain function. GABAergic interneurons are highly diverse. The respective GABAA receptor subtypes, therefore, provide new opportunities not only for understanding GABA-dependent pathophysiologies but also for targeting of selective neuronal circuits by drugs. The pharmacological relevance of GABAA receptor subtypes is increasingly being recognized. A new central nervous system pharmacology is on the horizon. The development of anxiolytic drugs devoid of sedation and of agents that enhance hippocampus-dependent learning and memory has become a novel and highly selective therapeutic opportunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alger BE, Pitler TA (1995) Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci 18:333–340

    Article  PubMed  Google Scholar 

  • Barnard EA, Skolnick P, Olsen RW, Möhler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) Subtypes of γ-aminobutyric acid A receptors: classification on the bases of subunit structure and receptor function. Pharmacol Rev 50:291–313

    PubMed  Google Scholar 

  • Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud'homme JF, Baulac M, Brice A, Bruzzone R, LeGuern E (2001) First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat Genet 28:46–48

    Article  PubMed  Google Scholar 

  • Bianchi MT, Song L, Zhang H, Macdonald RL (2002) Two different mechanisms of disinhibition produced by GABAA receptor mutations linked to epilepsy in humans. J Neurosci 22:5321–5327

    PubMed  Google Scholar 

  • Bohlhalter S, Weinmann O, Möhler H, Fritschy JM (1996) Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci 16:283–297

    PubMed  Google Scholar 

  • Bormann J (2000) The “ABC” of GABA receptors. Trends Pharmacol Sci 21:16–19

    Article  PubMed  Google Scholar 

  • Bouilleret V, Ridoux V, Depaulis A, Marescaux C, Nehlig A, Le Gal La Salle G (1999) Recurrent seizures and hippocampal sclerosis following intrahippocampal kainite injectionin adult mice: EEG, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89:7171–7729

    Article  Google Scholar 

  • Bouilleret V, Loup F, Kiener T, Marescaux C, Fritschy JM (2000) Early loss of interneurons and delayed subunit-specific changes in GABAA-receptor expression in a mouse model of mesial temporal lobe epilepsy. Hippocampus 10:305–324

    Article  PubMed  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497:753–759

    PubMed  Google Scholar 

  • Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage independent potassium conductance. Nature 409:88–92

    Article  PubMed  Google Scholar 

  • Brun VH, Otnaess MK, Molden S, Steffenach HA, Witter MP, Moser MB, Moser EI (2002) Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296:2243–2246

    Article  PubMed  Google Scholar 

  • Brussaard AB, Herbison AE (2000) Long-term plasticity of postsynaptic GABAA-receptor function in the adult brain: insights from the oxytocin neurone. Trends Neurosci 23:190–195

    Article  PubMed  Google Scholar 

  • Buhl EH, Tamas G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol (Lond) 513:117–126

    Article  PubMed  Google Scholar 

  • Burgess N, Maguire EA, O'Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641

    PubMed  Google Scholar 

  • Buzsaki G, Chrobak JJ (1995) Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol 5:504–510

    Article  PubMed  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  PubMed  Google Scholar 

  • Caulfield MP, Brown DA (1992) Cannabinoid receptor agonists inhibit Ca current inNG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 106:231–232

    PubMed  Google Scholar 

  • Chambers MS, attack JR, Broughton HB, Collinson N, Cook S, Dawson GR, Hobbs SC, Marshall G, Maubach KA, Pillai GV, Reeve AJ, MacLeod AM (2003) Identification of a novel, selective GABAA α5 receptor inverse agonist which enhances cognition. J Med Chem 46:2227–2240

    Article  PubMed  Google Scholar 

  • Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability [comment]. Neuron 38:461–472

    Article  PubMed  Google Scholar 

  • Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421

    Article  PubMed  Google Scholar 

  • Collinson N (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J Neurosci 22:5572–5580

    PubMed  Google Scholar 

  • Cossette P, Liu L, Brisebois K, Dong H, Lortie A, Vanasse M, Saint-Hilaire JM, Carmant L, Verner A, Lu WY, Wang YT, Rouleau GA (2002) Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 31:184–189

    Article  PubMed  Google Scholar 

  • Coulter DA (2001) Epilepsy-associated plasticity in γ-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol 45:237–252

    PubMed  Google Scholar 

  • Crestani F, Lorez M, Baer K, Essrich C, Benke D, Laurent JP, Belzung C, Fritschy JM, Luscher B, Möhler H (1999) Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat Neurosci 2:833–839

    Article  PubMed  Google Scholar 

  • Crestani F, Martin JR, Möhler H, Rudolph U (2000) Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 131:1251–1254

    Article  PubMed  Google Scholar 

  • Crestani F, Löw K, Keist R, Mandelli M, Möhler H, Rudolph U (2001) Molecular targets for the myorelaxant action of diazepam. Mol Pharmacol 59:442–445

    PubMed  Google Scholar 

  • Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Bluethmann H, Möhler H, Rudolph U (2002) Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc Natl Acad Sci U S A 99:8980–8985

    Article  PubMed  Google Scholar 

  • Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsaki G (1999) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 19:274–287

    PubMed  Google Scholar 

  • Dämgen K, Lüddens H (1999) Zaleplon displays a selectivity to recombinant GABAA receptors different from zolpidem, zopiclone and benzodiazepines. Neurosci Res Commun 25:139–148

    Article  Google Scholar 

  • Davis S, Butcher SP, Morris RGM (1992) The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J Neurosci 12:21–34

    PubMed  Google Scholar 

  • Devor A, Fritschy JM, Yarom Y (2001) Synaptic and extrasynaptic GABAA receptors in the inferior olivary nucleus differ in their spatial distribution, desensitization kinetics and subunit composition. J Neurophysiol 85:1686–1696

    PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716

    Article  PubMed  Google Scholar 

  • Eysenck MW (1992) The nature of anxiety. In: Gale A, Eysenck MW (eds) Handbook of individual differences: biological perspectives. Wiley and Sons, New York, pp 157–178

    Google Scholar 

  • Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189

    Article  PubMed  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:345–470

    Article  Google Scholar 

  • Fritschy JM, Brünig I (2003) Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98:299–323

    Article  PubMed  Google Scholar 

  • Fritschy JM, Möhler H (1995) GABAA receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    Article  PubMed  Google Scholar 

  • Fritschy JM, Weinmann O, Wenzel A, Benke D (1998a) Synapse-specific localization of NMDA and GABAA receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390:194–210

    Article  PubMed  Google Scholar 

  • Fritschy JM, Johnson DK, Möhler H, Rudolph U (1998b) Independent assembly and subcellular targeting of GABAA receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci Lett 249:99–102

    Article  PubMed  Google Scholar 

  • Fritschy JM, Crestani F, Rudolph U, Möhler H (2004) GABAA receptor subtypes with special reference to memory function and neurological disorders. In: Hensch T (ed) Excitatory inhibitory balance: synapses, circuits and systems plasticity. Kluver Academic Press, pp 215–228

    Google Scholar 

  • Gao B, Fritschy JM, Benke D, Möhler H (1993) Neuron-specific expression of GABAA receptor subtypes: differential associations of the α1-and α3-subunits with serotonergic and GABAergic neurons. Neuroscience 54:881–892

    Article  PubMed  Google Scholar 

  • Geiger JR, Lubke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signalling at a principal neuron-interneuron synapse. Neuron 18:1009–1023

    Article  PubMed  Google Scholar 

  • Gingrich KJ, Roberts WA, Kass RS (1995) Dependence of theGABAA receptor gating kinetics on the α-subunit isoform: implications for structure-function relations and synaptic transmission. J Physiol 489:529–543

    PubMed  Google Scholar 

  • Goddard AW, Mason GF, Almai A, Rothman DL, Behar KL, Petroff OA, Chamey DS, Krystal JH (2001) Reductions in occipital cortex GABA levels in panic disorder detected 1H MRS. Arch Gen Psychiatry 58:556–561

    Article  PubMed  Google Scholar 

  • Gulledge AT, Stuart GJ (2003) Excitatory actions of GABA in the cortex. Neuron 37:299–309

    Article  PubMed  Google Scholar 

  • Gupta A, Wang Y, Markam H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    Article  PubMed  Google Scholar 

  • Harris KD, Henze DA, Hirase H, Leinekugel X, Dragoi G, Czurko A, Buzsaki G (2002) Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417:738–741

    Article  PubMed  Google Scholar 

  • Hood SD, Argyropoulos SV, Nutt DJ (2000) Agents in development for anxiety disorders. Current status and future potential. CNS Drugs 13:421–431

    Google Scholar 

  • Huerta PT, Sun LD, Wilson MA, Tonegawa S (2000) Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron 25:473–480

    Article  PubMed  Google Scholar 

  • Huntsman MM, Tran BV, Potkin SG, Bunney Wejr, Jones EG (1998) Altered ratios of alternatively spliced γ2 subunit of mRNAs of GABAA receptors in prefrontal cortex of schizophrenics. Proc Natl Acad Sci U S A 95:15066–15071

    Article  PubMed  Google Scholar 

  • Huntsmann MM, Porcello DM, Homanics GE, DeLorey TM, Huguenard JR (1999) Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 283:541–543

    Article  PubMed  Google Scholar 

  • Hutcheon B, Morley P, Poulter MO (2000) Developmental change in GABAA receptor desensitization kinetics and its role in synapse function in rat cortical neurons. J Physiol 522:3–17

    Article  PubMed  Google Scholar 

  • Jüttner R, Meier J, Grantyn R (2001) Slow IPSC kinetics, low levels of α1 subunit expression and paired-pulse depression are distinct properties of neonatal inhibitory GABAergic synaptic connections in the mouse superior colliculus. Eur J Neurosci 13:2088–2098

    Article  PubMed  Google Scholar 

  • Kalueff A, Nutt DJ (1997) Role of GABA inmemory and anxiety. Depress Anxiety 4:100–110

    Article  Google Scholar 

  • Kananura C, Haug K, Sander T, Runge U, Gu W, Hallmann K, Rebstock J, Heils A, Steinlein OK (2002) A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol 59:1137–1141

    Article  PubMed  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    Article  PubMed  Google Scholar 

  • Katona I, Sperlagh B, Sik A, Käfalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically locatedCB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558

    PubMed  Google Scholar 

  • Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci 21:9506–9518

    PubMed  Google Scholar 

  • Klausberger T, Roberts JD, Somogyi P (2002) Cell type-and input-specific differences in the number and subtypes of synaptic GABAA receptors in the hippocampus. J Neurosci 22:2513–2521

    PubMed  Google Scholar 

  • Klausberger T, Magill PJ, Marton LF, Roberts JDB, Cobden PM, Buzsaki G, Somogyi P (2003) Brain state-and cell type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848

    Article  PubMed  Google Scholar 

  • Kreitzer AC, Regehr WG (2001a) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells [comment]. Neuron 29:717–727

    Article  PubMed  Google Scholar 

  • Kreitzer AC, Regehr WG (2001b) Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J Neurosci 21:RC174

    Google Scholar 

  • Langer SZ, Faure-Halley C, Seeburg P, Graham D, Arbilla S (1992) The selectivity of zolpidem and alpidem for the α1-subunit of the GABAA receptor. Eur Neuropsychopharmacol 2:232–234

    Article  Google Scholar 

  • Laurent G (1996) Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci 19:489–496

    Article  PubMed  Google Scholar 

  • Llano I, Leresche N, Marty A (1991) Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6:565–574

    Article  PubMed  Google Scholar 

  • Loup F, Wieser HG, Yonekawa Y, Aguzzi A, Fritschy JM (2000) Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci 20:5401–5419

    PubMed  Google Scholar 

  • Löw K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, Fritschy JM, Rulicke T, Bluethmann H, Möhler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

    Article  PubMed  Google Scholar 

  • Maccaferri G, Roberts JDB, Szucs P, Cottingham CA, Somogyi P (2000) Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurons in rat hippocampus in vitro. J Physiol 524:91–116

    Article  PubMed  Google Scholar 

  • Maejima T, Ohno-Shosaku T, Kano M (2001) Endogenous cannabinoid mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29:729–738

    Article  PubMed  Google Scholar 

  • Malizia AL (1999) What do brain imaging studies tell us about anxiety disorders? J Psychopharmacol 13:372–378

    PubMed  Google Scholar 

  • Malizia AL, Cunningham VJ, Bell CJ, Liddle PF, Jones T, Nutt DJ (1998) Decreased brain GABAA-benzodiazepine receptor binding in panic disorders: preliminary results from a quantitative PET study. Arch Gen Psychiatry 55:715–720

    Article  PubMed  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, DiMarzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    Article  PubMed  Google Scholar 

  • Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18:1811–1825

    Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    Article  PubMed  Google Scholar 

  • McDonald BJ, Amato A, Connolly CN, Benke D, Moss SJ, Smart TG (1998) Adjacent phosphorylation sites on GABAA receptor β subunits determine regulation by cAMP-dependent protein kinase. Nat Neurosci 1:23–28

    Article  PubMed  Google Scholar 

  • McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA (1996) Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87:1339–1349

    Article  PubMed  Google Scholar 

  • McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat Neurosci 3:587–592

    Article  PubMed  Google Scholar 

  • Meldrum BS, Whiting P (2001) Anticonvulsants acting on the GABA system. In: Möhler H (ed) Pharmacology of GABA and glycine neurotransmission. Springer-Verlag, Berlin, Heidelberg, New York, pp 173–194

    Google Scholar 

  • Metha MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–746

    Article  PubMed  Google Scholar 

  • Miles R (2000) Perspectives: neurobiology. Diversity in inhibition. Science 287:244–246

    Article  PubMed  Google Scholar 

  • Minassian BA, DeLorey TM, Olsen RW, Philippart M, Bronstein Y, Zhang Q, Guerrini R, Van Ness P, Livet MO, Delgado-Escueta AV (1998) Angelman syndrome: correlations between epilepsy phenotypes and genotypes. Ann Neurol 43:485–493

    PubMed  Google Scholar 

  • Mody I, Nusser Z (2000) Differential activation of synaptic and extrasynaptic GABAA receptors. Eur J Neurosci 12Suppl 11:398

    Google Scholar 

  • Möhler H (2001) Functions of GABA receptors: pharmacology and pathophysiology. In: Möhler H (ed) Pharmacology of GABA and glycine neurotransmission. Springer-Verlag, Berlin, Heidelberg, New York, pp 101–116

    Google Scholar 

  • Möhler H (2002) Pathophysiological aspects of diversity in neuronal inhibition: a new benzodiazepine pharmacology. DialoguesClinNeurosci 4:261–269 (this reference served as major source for the present article)

    Google Scholar 

  • Möhler H, Benke D, Fritschy JM, Benson J (2000) The benzodiazepine site of GABAA receptors. In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott, Philadelphia, pp 97–112

    Google Scholar 

  • Möhler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharmacol Exp Ther 300:2–8 (This reference served as major source for the present article)

    Article  PubMed  Google Scholar 

  • Morris RGM (1989) Synaptic plasticity and learning: selective impairment of learning in rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9:3040–3057

    PubMed  Google Scholar 

  • Morris RGM, Anderson A, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist AP5. Nature 319:774–776

    Article  PubMed  Google Scholar 

  • Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2:240–250

    Article  PubMed  Google Scholar 

  • Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of D4 receptors in GABAergic neurons in primate brain. Nature 381:245–248

    Article  PubMed  Google Scholar 

  • Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297:211–218

    Article  PubMed  Google Scholar 

  • Nusser Z, Sieghart W, Benke D, Fritschy JM, Somogyi P (1996a) Differential synaptic localization of two major γ-aminobutyric acid type: a receptor α subunits on hippocampal pyramidal cells. Proc Natl Acad Sci U S A 93:11939–11944

    Article  PubMed  Google Scholar 

  • Nusser Z, Sieghart W, Stephenson FA, Somogyi P (1996b) The α6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. J Neurosci 16:103–114

    PubMed  Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703

    PubMed  Google Scholar 

  • Nutt DJ, Malizia AL (2001) New insights into the role of the GABAA receptor in psychiatric disorders. Brit J Psychiatry 179:390–396

    Article  Google Scholar 

  • Nyíri G, Freund TF, Somogyi P (2001) Input-dependent synaptic targeting of α2 subunit containing GABAA receptors in hippocampal pyramidal cells of the rat. Eur J Neurosci 13:428–442

    Article  PubMed  Google Scholar 

  • O'Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330

    Article  PubMed  Google Scholar 

  • Olsen RW, DeLorey TM, Gordey M, Kang MH (1999) GABA receptor function and epilepsy. Adv Neurol 79:499–510

    PubMed  Google Scholar 

  • Paulsen O, Moser EI (1998) A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 21:273–278

    Article  PubMed  Google Scholar 

  • Pawelzik H, Hughes DI, Thomson AM (2002) Physiological and morphological diversity of immunocytochemically defined parvalbumin-and cholecystokinin-positive interneurons in CA1 of the adult rat hippocampus. J Comp Neurol 443:346–367

    Article  PubMed  Google Scholar 

  • Penttonen M (1998) Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur J Neurosci 10:718–728

    Article  PubMed  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850

    Article  PubMed  Google Scholar 

  • Pitler TA, Alger BE (1992) Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 12:4122–4132

    PubMed  Google Scholar 

  • Pitler TA, Alger BE (1994) Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron 13:1447–1455

    Article  PubMed  Google Scholar 

  • Riban V, Bouilleret V, Pham-Lé BT, Fritschy JM, Marescaux C, Depaulis A (2002) Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112:101–111

    Article  PubMed  Google Scholar 

  • Rudolph U, Crestani F, Benke D, Brünig I, Benson J, Fritschy JM, Martin JR, Bluethmann H, Mohler H (1999) Benzodiazepine actions mediated by specific γ-aminobutyric acid A receptor subtypes. Nature 401:796–800

    Article  PubMed  Google Scholar 

  • Rudolph U, Crestani F, Möhler H (2001) GABAA receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22:188–194

    Article  PubMed  Google Scholar 

  • Sanger DJ, Morel E, Perrault G (1996) Comparison of the pharmacological profiles of the hypnotic drugs, zaleplon and zolpidem. Eur J Pharmacol 313:35–42

    Article  PubMed  Google Scholar 

  • Sarter M, Bruno JP, Berntson GG (2001) Psychotogenic properties of benzodiazepine receptor inverse agonists. Psychopharmacology (Berl) 156:1–13

    Article  PubMed  Google Scholar 

  • Sassoè-Pognetto M, Panzanelli P, Sieghart W, Fritschy JM (2000) Co-localization of multiple GABAA receptor subtypes with gephyrin at postsynaptic sites. J Comp Neurol 420:481–498

    Article  PubMed  Google Scholar 

  • Scatton B, Depoortere H, George P, Sevrin M, Benavides J, Schoemaker H, Perrault (2000) Selectivity for GABAA receptor α subunits as a strategy for developing hypnoselective and anxioselective drugs. Int J Neuropsychopharmacol 3:S41.3

    Google Scholar 

  • Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABAA receptor subtypes. Curr Top Med Chem 2:795–816

    Article  PubMed  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172

    Article  PubMed  Google Scholar 

  • Snead OC, Depaulis A, Vergues M, Marescaux C (1999) Absence epilepsy: advances in experimental animal models. Adv Neurol 79:253–278

    PubMed  Google Scholar 

  • Stein V, Nicoll RA (2003) GABA generates excitement. Neuron 37:375–378

    Article  PubMed  Google Scholar 

  • Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69

    Article  PubMed  Google Scholar 

  • Tia S, Wang JF, Kotchabhakdi N, Vicini S (1996) Distinct deactivation and desensitization kinetics of recombinant GABAA receptors. Neuropharmacology 35:1375–1382

    Article  PubMed  Google Scholar 

  • Tiihonen J, Kuikka J, Rasanen P, Lepola U, Koponen H, Liuska A, Lehmusvaara A, Vainio P, Kononen M, Bergstrom K, Yu M, Kinnunen I, Akerman K, Karhu J (1997) Cerebral benzodiazepine receptor binding and distribution in generalized anxiety disorders: a fractal analysis. Mol Psychiatry 6:463–471

    Article  Google Scholar 

  • Traub RD, Whittington MA, Stanford IM, Jefferys JG (1996) Amechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383:621–624

    Article  PubMed  Google Scholar 

  • Traub RD, Draguhn A, Whittington MA, Baldeweg T, Bibbig A, Buhl EH, Schmitz D (2002) Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev Neurosci 13:1–30

    PubMed  Google Scholar 

  • Treimann DM (2001) GABAergic mechanisms in epilepsy. Epilepsia 42:8–12

    Article  PubMed  Google Scholar 

  • Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:1327–1338

    Article  PubMed  Google Scholar 

  • Vicini S, Ferguson C, Prybylowski K, Kralic J, Morrow AL, Homanics GE (2001) GABAA receptor α1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J Neurosci 21:3009–3016

    PubMed  Google Scholar 

  • Vincent P, Marty A (1993) Neighboring cerebellar Purkinje cell communicate via retrograde inhibition of common presynaptic interneurons. Neuron 11:885–893

    Article  PubMed  Google Scholar 

  • Volk DW, Fritschy JM, Pierri JN, Auh S, Sampson AR, Lewis DA (2002) Reciprocal alterations in pre-and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex 12:1063–1070

    Article  PubMed  Google Scholar 

  • Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG, Williams DA, Sutherland GR, Mulley JC, Scheffer IE, Berkovic SF (2001) Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 28:49–52

    Article  PubMed  Google Scholar 

  • Weiller E, Bisserbe JC, Maier W, Lecrubier Y (1998) Prevalence and recognition of anxiety syndromes in five European primary care settings. A report from the WHO study on Psychological Problems in General Health Care. Br J Psychiatry Suppl 173:18–23

    Google Scholar 

  • Whiting P, Wafford KA, McKernan RM (2000) Pharmacologic subtypes of GABAA receptors based on subunit composition. In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott, Philadelphia, pp 113–126

    Google Scholar 

  • Whiting PJ (2003) GABAA receptor subtypes in the brain: a paradigmfor CNS drug discovery? Drug Discov Today 8:445–450

    Article  PubMed  Google Scholar 

  • Whittington MA, Traub RD, Jeffreys JG (1995) Synchronized oscillations in interneuron network driven by metabotropic glutamate receptor activation. Nature 373:612–615

    Article  PubMed  Google Scholar 

  • Whittington MA, Traub RD, Faulkner HJ, Stauford IM, Jeffreys JG (1997) Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations. Proc Natl Acad Sci U S A 94:12'198–12'203

    Article  Google Scholar 

  • Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. [Erratum appears in Nature 2001 Jun 21;411(6840):974]. Nature 410:588–592

    Article  PubMed  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Jewis DA (1998) Asubclass of prefrontal GABA axon terminals are selectively altered in schizophrenia. ProcNatl Acad Sci U S A 95:5341–5346

    Article  Google Scholar 

  • Zhang Y, Perez Velazquez JL, Tian GF, Wu CP, Skinner FK, Caslen PL, Zhang L (1998) Slow oscillations (≤1 Hz) mediated by GABAergic interneuronal networks in rat hippocampus. J Neurosci 18:9256–9268

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Möhler, H., Fritschy, JM., Vogt, K., Crestani, F., Rudolph, U. (2005). Pathophysiology and Pharmacology of GABAA Receptors. In: Holsboer, F., Ströhle, A. (eds) Anxiety and Anxiolytic Drugs. Handbook of Experimental Pharmacology, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28082-0_9

Download citation

Publish with us

Policies and ethics