Skip to main content

Mutagenesis and Knockout Models: NK1 and Substance P

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 169))

Abstract

Tachykinins play an important role as peptide modulators in the CNS. Based on the concentration and distribution of the peptides and their receptors, substance P (SP) and its cognate receptor neurokinin 1 (NK1R) seem to play a particularly important role in higher brain functions. They are expressed at high levels in the limbic system, which is the neural basis of emotional responses. Three different lines of evidence from physiological studies support such a role of SP in the regulation of emotionality: (1) stress is often associated with elevated level of SP in animals and humans; (2) systematic and local injections of SP influence anxiety levels in a dose-dependent and site-specific manner; (3) NK1 receptor antagonists show anxiolytic effects in different animal models of anxiety. Although these studies point to the NK1 receptor as a promising target for the pharmacotherapy of anxiety disorders, high affinity antagonists for the human receptors could not be studied in rats or mice due to species differences in the antagonist binding sites. However, studies on anxiety and depression-related behaviors have now been performed in mouse mutants deficient in NK1 receptor or SP and NKA. These genetic studies have shown that anxiety and depression-related phenotypes are profoundly affected by the tachykinin system. For example, NK1R-deficient mice seem to be less prone depression-related behaviors in models of depression, and one study also provided evidence for reduced anxiety levels. Mice deficient in SP and NKA behaved similarly as the NK1R knockouts. In animal models of anxiety they performed like wildtype mice treated with anxiolytic drugs. In behavioral paradigms related to depression they behaved like wildtype animals treated with antidepressants. In summary, the genetic studies clearly show that the SP/NK1 system plays an important role in the modulation of emotional behaviors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguiar MS, Brandao ML (1996) Effects of microinjections of the neuropeptide substance P in the dorsal periaqueductal gray on the behaviour of rats in the plus-maze test. Physiol Behav 60:1183–1186

    Article  PubMed  Google Scholar 

  • Baretta IP, Assreuy J, De Lima TC (2001) Nitric oxide involvement in the anxiogenic-like effect of substance P. Behav Brain Res 121:199–205

    Article  PubMed  Google Scholar 

  • Barros M, De Souza Silva MA, Huston JP, Tomaz C (2002) Anxiolytic-like effects of substance P fragment (SP(1–7)) in non-human primates (Callithrix penicillata). Peptides 23:967–973

    Article  PubMed  Google Scholar 

  • Basbaum AI (1999) Distinct neurochemical features of acute and persistent pain. Proc Natl Acad Sci U S A 96:7739–7743

    Article  PubMed  Google Scholar 

  • Batten TF, Gamboa-Esteves FO, Saha S (2002) Evidence for peptide co-transmission in retrograde-and anterograde-labelled central nucleus of amygdala neurones projecting to NTS. Auton Neurosci 98:28–32

    Article  PubMed  Google Scholar 

  • Beaujouan JC, Saffroy M, Torrens Y, Sagan S, Glowinski J (1999) Pharmacological characterization of tachykinin septide-sensitive binding sites in the rat submaxillary gland. Peptides 20:1347–1352

    PubMed  Google Scholar 

  • Beaujouan JC, Saffroy M, Torrens Y, Glowinski J (2000) Different subtypes of tachykinin NK(1) receptor binding sites are present in the rat brain. J Neurochem 75:1015–1026

    Article  PubMed  Google Scholar 

  • Bergstrom M, Fasth KJ, Kilpatrick G, Ward P, Cable KM, Wipperman MD, Sutherland DR, Langstrom B (2000) Brain uptake and receptor binding of two [11C]labelled selective highaffinity NK1-antagonists, GR203040 and GR205171—PET studies in rhesus monkey. Neuropharmacology 39:664–670

    Article  PubMed  Google Scholar 

  • Bilkei-Gorzo A, Racz I, Michel K, Zimmer A (2002) Diminished anxiety-and depression-related behaviors in mice with selective deletion of the Tac1 gene. J Neurosci 22:10046–10052

    PubMed  Google Scholar 

  • Blier P, Gobbi G, Haddjeri N, Santarelli L, Mathew G, Hen R (2004) Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: relevance to the antidepressant/anxiolytic response. J Psychiatry Neurosci 29:208–218

    PubMed  Google Scholar 

  • Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl) 94:147–160

    Article  PubMed  Google Scholar 

  • Boyce S, Smith D, Carlson E, Hewson L, Rigby M, O'Donnell R, Harrison T, Rupniak NM (2001) Intra-amygdala injection of the substance P [NK(1) receptor] antagonist L-760735 inhibits neonatal vocalisations in guinea-pigs. Neuropharmacology 41:130–137

    Article  PubMed  Google Scholar 

  • Brodin E, Rosen A, Schott E, Brodin K (1994) Effects of sequential removal of rats from agroupcage, and of individual housing of rats, on substance P, cholecystokinin and somatostatin levels in the periaqueductal grey and limbic regions. Neuropeptides 26:253–260

    Article  PubMed  Google Scholar 

  • Cao YQ, Mantyh PW, Carlson EJ, Gillespie AM, Epstein CJ, Basbaum AI (1998) Primary afferent tachykinins are required to experience moderate to intense pain. Nature 392:390–394

    Article  PubMed  Google Scholar 

  • Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Muller U, Aguet M, Babinet C, Shih JC, et al (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1766

    PubMed  Google Scholar 

  • Chang MM, Leeman SE, Niall HD (1971) Amino-acid sequence of substance P. Nat New Biol 232:86–87

    PubMed  Google Scholar 

  • Cheeta S, Tucci S, Sandhu J, Williams AR, Rupniak NM, File SE (2001) Anxiolytic actions of the substance P (NK1) receptor antagonist L-760735 and the 5-HT1A agonist 8-OH-DPAT in the social interaction test in gerbils. Brain Res 915:170–175

    Article  PubMed  Google Scholar 

  • Choleris E, Thomas AW, Kavaliers M, Prato FS (2001) A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 25:235–260

    Article  PubMed  Google Scholar 

  • Commons KG, Valentino RJ (2002) Cellular basis for the effects of substance P in the periaqueductal gray and dorsal raphe nucleus. J Comp Neurol 447:82–97

    Article  PubMed  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1996) The biochemical basis of neuropharmacology. Oxford University Press, New York

    Google Scholar 

  • Culman J, Wiegand B, Spitznagel H, Klee S, Unger T (1995) Effects of the tachykinin NK1 receptor antagonist, RP 67580, on central cardiovascular and behavioural effects of substance P, neurokinin A and neurokinin B. Br J Pharmacol 114:1310–1316

    PubMed  Google Scholar 

  • Culman J, Klee S, Ohlendorf C, Unger T (1997) Effect of tachykinin receptor inhibition in the brain on cardiovascular and behavioral responses to stress. J Pharmacol Exp Ther 280:238–246

    PubMed  Google Scholar 

  • De Araujo JE, Silva RC, Huston JP, Brandao ML (1999) Anxiogenic effects of substance P and its 7–11 C terminal, but not the 1–7 N terminal, injected into the dorsal periaqueductal gray. Peptides 20:1437–1443

    Article  PubMed  Google Scholar 

  • De Felipe C, Herrero JF, O'Brien JA, Palmer JA, Doyle CA, Smith AJ, Laird JM, Belmonte C, Cervero F, Hunt SP (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397

    Article  PubMed  Google Scholar 

  • Echeverry MB, Hasenohrl RU, Huston JP, Tomaz C (2001) Comparison of neurokinin SP with diazepam in effects on memory and fear parameters in the elevated T-maze free exploration paradigm. Peptides 22:1031–1036

    Article  PubMed  Google Scholar 

  • Emonds-Alt X, Doutremepuich JD, Heaulme M, Neliat G, Santucci V, Steinberg R, Vilain P, Bichon D, Ducoux JP, Proietto V, et al (1993) In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist. Eur J Pharmacol 250:403–413

    Article  PubMed  Google Scholar 

  • Erspamer GF, Erspamer V, Piccinelli D (1980) Parallel bioassay of physalaemin and kassinin, a tachykinin dodecapeptide from the skin of the African frog Kassina senegalensis. Naunyn Schmiedebergs Arch Pharmacol 311:61–65

    Article  PubMed  Google Scholar 

  • Fehder WP, Sachs J, Uvaydova M, Douglas SD (1997) Substance P as an immune modulator of anxiety. Neuroimmunomodulation 4:42–48

    PubMed  Google Scholar 

  • File SE (1985) Animal models for predicting clinical efficacy of anxiolytic drugs: social behaviour. Neuropsychobiology 13:55–62

    PubMed  Google Scholar 

  • Folkers K, Hakanson R, Horig J, Xu JC, Leander S (1984) Biological evaluation of substance P antagonists. Br J Pharmacol 83:449–456

    PubMed  Google Scholar 

  • Fong TM, Yu H, Strader CD (1992) Molecular basis for the species selectivity of the neurokinin-1 receptor antagonists CP-96,345 and RP67580. J Biol Chem 267:25668–25671

    PubMed  Google Scholar 

  • Froger N, Gardier AM, Moratalla R, Alberti I, Lena I, Boni C, De Felipe C, Rupniak NM, Hunt SP, Jacquot C, Hamon M, Lanfumey L (2001) 5-hydroxytryptamine (5-HT)1A autoreceptor adaptive changes in substance P (neurokinin 1) receptor knock-out mice mimic antidepressant-induced desensitization. J Neurosci 21:8188–8197

    PubMed  Google Scholar 

  • Gardier AM, Bourin M (2001) Appropriate use of “knockout” mice as models of depression or models of testing the efficacy of antidepressants. Psychopharmacology (Berl) 153:393–394

    Article  PubMed  Google Scholar 

  • Gardner CJ, Armour DR, Beattie DT, Gale JD, Hawcock AB, Kilpatrick GJ, Twissell DJ, Ward P (1996) GR205171: a novel antagonist with high affinity for the tachykinin NK1 receptor, and potent broad-spectrum anti-emetic activity. Regul Pept 65:45–53

    Article  PubMed  Google Scholar 

  • Gavioli EC, Canteras NS, De Lima TC (1999) Anxiogenic-like effect induced by substance P injected into the lateral septal nucleus. Neuroreport 10:3399–3403

    PubMed  Google Scholar 

  • Gavioli EC, Canteras NS, De Lima TC (2002) The role of lateral septal NK1 receptors in mediating anxiogenic effects inducedby intracerebroventricular injection of substance P. Behav Brain Res 134:411–415

    Article  PubMed  Google Scholar 

  • Gentsch C, Cutler M, Vassout A, Veenstra S, Brugger F (2002) Anxiolytic effect of NKP608, a NK1-receptor antagonist, in the social investigation test in gerbils. Behav Brain Res 133:363–368

    Article  PubMed  Google Scholar 

  • Gray TS, Magnuson DJ (1992) Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. Peptides 13:451–460

    Article  PubMed  Google Scholar 

  • Griebel G, Perrault G, Soubrie P (2001) Effects of SR48968, a selective non-peptide NK2 receptor antagonist on emotional processes in rodents. Psychopharmacology (Berl) 158:241–251

    Article  PubMed  Google Scholar 

  • Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD, Karoum F, Gal J, Shih JC (1997) Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet 17:206–210

    Article  PubMed  Google Scholar 

  • Hasenohrl RU, Jentjens O, De Souza Silva MA, Tomaz C, Huston JP (1998) Anxiolytic-like action of neurokinin substance P administered systemically or into the nucleus basalis magnocellularis region. Eur J Pharmacol 354:123–133

    Article  PubMed  Google Scholar 

  • Hasenohrl RU, Souza-Silva MA, Nikolaus S, Tomaz C, Brandao ML, Schwarting RK, Huston JP (2000) Substance P and its role in neural mechanisms governing learning, anxiety and functional recovery. Neuropeptides 34:272–280

    Article  PubMed  Google Scholar 

  • Herbert MK, Holzer P (2002) [Why are substance P(NK1)-receptor antagonists ineffective in pain treatment?]. Anaesthesist 51:308–319

    Article  PubMed  Google Scholar 

  • Hokfelt T, Pernow B, Wahren J (2001) Substance P: a pioneer amongst neuropeptides. J Intern Med 249:27–40

    Article  PubMed  Google Scholar 

  • Honkaniemi J, Pelto-Huikko M, Rechardt L, Isola J, Lammi A, Fuxe K, Gustafsson JA, Wikstrom AC, Hokfelt T (1992) Colocalization of peptide and glucocorticoid receptor immunoreactivities in rat central amygdaloid nucleus. Neuroendocrinology 55:451–459

    PubMed  Google Scholar 

  • Hurd YL, Keller E, Sotonyi P, Sedvall G (1999) Preprotachykinin-A mRNA expression in the human and monkey brain: an in situ hybridization study. J Comp Neurol 411:56–72

    Article  PubMed  Google Scholar 

  • Jesberger JA, Richardson JS (1988) Brain output dysregulation induced by olfactory bulbectomy: an approximation in the rat of major depressive disorder in humans? Int J Neurosci 38:241–265

    PubMed  Google Scholar 

  • Jessop DS, Renshaw D, Larsen PJ, Chowdrey HS, Harbuz MS (2000) Substance P is involved in terminating the hypothalamo-pituitary-adrenal axis response to acute stress through centrally located neurokinin-1 receptors. Stress 3:209–220

    PubMed  Google Scholar 

  • Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Rupniak NM, et al (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281:1640–1645

    Article  PubMed  Google Scholar 

  • Kramer MS, Winokur A, Kelsey J, Preskorn SH, Rothschild AJ, Snavely D, Ghosh K, Ball WA, Reines SA, Munjack D, Apter JT, Cunningham L, Kling M, Bari M, Getson A, Lee Y (2004) Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 29:385–392

    Article  PubMed  Google Scholar 

  • Ku YH, Tan L, Li LS, Ding X (1998) Role of corticotropin-releasing factor and substance P in pressor responses of nuclei controlling emotion and stress. Peptides 19:677–682

    Article  PubMed  Google Scholar 

  • Loiseau F, Le Bihan C, Hamon M, Thiebot MH (2003) Distinct effects of diazepam and NK1 receptor antagonists in two conflict procedures in rats. Behav Pharmacol 14:447–455

    PubMed  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    Article  PubMed  Google Scholar 

  • Maggi CA (1995) The mammalian tachykinin receptors. Gen Pharmacol 26:911–944

    PubMed  Google Scholar 

  • Merchenthaler I, Maderdrut JL, O'Harte F, Conlon JM (1992) Localization of neurokinin B in the central nervous system of the rat. Peptides 13:815–829

    Article  PubMed  Google Scholar 

  • Murtra P, Sheasby AM, Hunt SP, De Felipe C (2000) Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature 405:180–183

    Article  PubMed  Google Scholar 

  • Nakanishi S (1991) Mammalian tachykinin receptors. Annu Rev Neurosci 14:123–136

    Article  PubMed  Google Scholar 

  • Nikolaus S, Huston JP, Hasenohrl RU (1999) Reinforcing effects of neurokinin substance P in the ventral pallidum: mediation by the tachykinin NK1 receptor. Eur J Pharmacol 370:93–99

    Article  PubMed  Google Scholar 

  • Otmakhova NA, Gurevich EV, Katkov YA, Nesterova IV, Bobkova NV (1992) Dissociation of multiple behavioral effects between olfactory bulbectomized C57Bl/6J and DBA/2J mice. Physiol Behav 52:441–448

    Article  PubMed  Google Scholar 

  • Porsolt RD (1997) Historical perspective on CMS model. Psychopharmacology (Berl) 134:363–4; discussion 371–7

    Article  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977a) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977b) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  Google Scholar 

  • Ribeiro-da-Silva A, Hokfelt T (2000) Neuroanatomical localisation of Substance P in the CNS and sensory neurons. Neuropeptides 34:256–271

    Article  PubMed  Google Scholar 

  • Roberts GW, Woodhams PL, Polak JM, Crow TJ (1982) Distribution of neuropeptides in the limbic system of the rat: the amygdaloid complex. Neuroscience 7:99–131

    Article  PubMed  Google Scholar 

  • Rochford J, Beaulieu S, Rousse I, Glowa JR, Barden N (1997) Behavioral reactivity to aversive stimuli in a transgenic mouse model of impaired glucocorticoid (type II) receptor function: effects of diazepam and FG-7142. Psychopharmacology (Berl) 132:145–152

    Article  PubMed  Google Scholar 

  • Rodgers RJ, Gentsch C, Hoyer D, Bryant E, Green AJ, Kolokotroni KZ, Martin JL (2004) The NK1 receptor antagonist NKP608 lacks anxiolytic-like activity in Swiss-Webster mice exposed to the elevated plus-maze. Behav Brain Res 154:183–192

    PubMed  Google Scholar 

  • Rosell S, Bjorkroth U, Xu JC, Folkers K (1983) The pharmacological profile of a substance P (SP) antagonist. Evidence for the existence of subpopulations of SP receptors. Acta Physiol Scand 117:445–449

    PubMed  Google Scholar 

  • Rosen A, Brodin K, Eneroth P, Brodin E (1992) Short-term restraint stress and s.c. saline injection alter the tissue levels of substance P and cholecystokinin in the peri-aqueductal grey and limbic regions of rat brain. Acta Physiol Scand 146:341–348

    PubMed  Google Scholar 

  • Rothman RB, Herkenham M, Pert CB, Liang T, Cascieri MA (1984) Visualization of rat brain receptors for the neuropeptide, substance P. Brain Res 309:47–54

    PubMed  Google Scholar 

  • Rupniak NM, Carlson EC, Harrison T, Oates B, Seward E, Owen S, de Felipe C, Hunt S, Wheeldon A (2000) Pharmacological blockade or genetic deletion of substance P (NK(1)) receptors attenuates neonatal vocalisation in guinea-pigs and mice. Neuropharmacology 39:1413–1421

    Article  PubMed  Google Scholar 

  • Rupniak NM, Carlson EJ, Webb JK, Harrison T, Porsolt RD, Roux S, de Felipe C, Hunt SP, Oates B, Wheeldon A (2001) Comparison of the phenotype of NK1R-/-mice with pharmacological blockade of the substance P (NK1) receptor in assays for antidepressant and anxiolytic drugs. Behav Pharmacol 12:497–508

    PubMed  Google Scholar 

  • Saffroy M, Torrens Y, Glowinski J, Beaujouan JC (2001) Presence of NK2 binding sites in the rat brain. J Neurochem 79:985–996

    Article  PubMed  Google Scholar 

  • Santarelli L, Gobbi G, Debs PC, Sibille ET, Blier P, Hen R, Heath MJ (2001) Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc Natl Acad Sci U S A 98:1912–1917

    Article  PubMed  Google Scholar 

  • Schedlowski M, Fluge T, Richter S, Tewes U, Schmidt RE, Wagner TO (1995) Beta-endorphin, but not substance-P, is increased by acute stress in humans. Psychoneuroendocrinology 20:103–110

    Article  PubMed  Google Scholar 

  • Schramm NL, McDonald MP, Limbird LE (2001) The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci 21:4875–4882

    PubMed  Google Scholar 

  • Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V (2002) The tachykinin peptide family. Pharmacol Rev 54:285–322

    Article  PubMed  Google Scholar 

  • Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT (1994) Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology (Berl) 116:56–64

    PubMed  Google Scholar 

  • Shughrue PJ, Lane MV, Merchenthaler I (1996) In situ hybridization analysis of the distribution of neurokinin-3 mRNA in the rat central nervous system. J Comp Neurol 372:395–414

    Article  PubMed  Google Scholar 

  • Smith DW, Hewson L, Fuller P, Williams AR, Wheeldon A, Rupniak NM (1999) The substance P antagonist L-760,735 inhibits stress-induced NK(1) receptor internalisation in the basolateral amygdala. Brain Res 848:90–95

    PubMed  Google Scholar 

  • Smith GS, Savery D, Marden C, Lopez Costa JJ, Averill S, Priestley JV, Rattray M (1994) Distribution of messenger RNAs encoding enkephalin, substance P, somatostatin, galanin, vasoactive intestinal polypeptide, neuropeptide Y, and calcitonin gene-related peptide in the midbrain periaqueductal grey in the rat. J Comp Neurol 350:23–40

    Article  PubMed  Google Scholar 

  • Spitznagel H, Baulmann J, Blume A, Unger T, Culman J (2001) C-FOS expression in the rat brain in response to substance P and neurokinin B. Brain Res 916:11–21

    Article  PubMed  Google Scholar 

  • Steinberg R, Alonso R, Griebel G, Bert L, Jung M, Oury-Donat F, Poncelet M, Gueudet C, Desvignes C, Le Fur G, Soubrie P (2001) Selective blockade of neurokinin-2 receptors produces antidepressant-like effects associated with reduced corticotropin-releasing factor function. J Pharmacol Exp Ther 299:449–458

    PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    Article  PubMed  Google Scholar 

  • Takayama H, Ota Z, Ogawa N (1986) Effect of immobilization stress on neuropeptides and their receptors in rat central nervous system. Regul Pept 15:239–248

    Article  PubMed  Google Scholar 

  • Takeda Y, Takeda J, Smart BM, Krause JE (1990) Regional distribution of neuropeptide gamma and other tachykinin peptides derived from the substance P gene in the rat. Regul Pept 28:323–333

    Article  PubMed  Google Scholar 

  • Teixeira RM, De lima TC (2003) Involvement of tachykinin NK1 receptor in the behavioral and immunological responses to swimming stress in mice. Neuropeptides 37:307–315

    Article  PubMed  Google Scholar 

  • Teixeira RM, Santos AR, Ribeiro SJ, Calixto JB, Rae GA, De Lima TC (1996) Effects of central administration of tachykinin receptor agonists and antagonists on plus-maze behavior in mice. Eur J Pharmacol 311:7–14

    Article  PubMed  Google Scholar 

  • Vassout A, Veenstra S, Hauser K, Ofner S, Brugger F, Schilling W, Gentsch C (2000) NKP608: a selective NK-1 receptor antagonist with anxiolytic-like effects in the social interaction and social exploration test in rats. Regul Pept 96:7–16

    Article  PubMed  Google Scholar 

  • Vendruscolo LF, Takahashi RN, Bruske GR, Ramos A (2003) Evaluation of the anxiolytic-like effect of NKP608, a NK1-receptor antagonist, in two rat strains that differ in anxiety-related behaviors. Psychopharmacology (Berl) 170:287–293

    Article  PubMed  Google Scholar 

  • Weiss DW, Hirt R, Tarcic N, Berzon Y, Ben-Zur H, Breznitz S, Glaser B, Grover NB, Baras M, O'Dorisio TM (1996) Studies in psychoneuroimmunology: psychological, immunological, and neuroendocrinological parameters in Israeli civilians during and after a period of Scud missile attacks. Behav Med 22:5–14

    PubMed  Google Scholar 

  • Yoshikawa T, Watanabe A, Ishitsuka Y, Nakaya A, Nakatani N (2002) Identification of multiple genetic loci linked to the propensity for “behavioral despair”in mice. Genome Res 12:357–366

    Article  PubMed  Google Scholar 

  • Zernig G, Troger J, Saria A (1993) Different behavioral profiles of the non-peptide substance P (NK1) antagonists CP-96,345 and RP 67580 in Swiss albino mice in the black-and-white box. Neurosci Lett 151:64–66

    Article  PubMed  Google Scholar 

  • Zimmer A, Zimmer AM, Baffi J, Usdin T, Reynolds K, Konig M, Palkovits M, Mezey E (1998) Hypoalgesia in mice with a targeted deletion of the tachykinin 1 gene. Proc Natl Acad Sci U S A 95:2630–2635

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bilkei-Gorzo, A., Zimmer, A. (2005). Mutagenesis and Knockout Models: NK1 and Substance P. In: Holsboer, F., Ströhle, A. (eds) Anxiety and Anxiolytic Drugs. Handbook of Experimental Pharmacology, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28082-0_5

Download citation

Publish with us

Policies and ethics