Skip to main content

Animal Models of Anxiety

  • Chapter
Anxiety and Anxiolytic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 169))

Abstract

Animal models for anxiety-related behavior are based on the assumption that anxiety in animals is comparable to anxiety in humans. Being anxious is an adaptive response to an unfamiliar environment, especially when confronted with danger or threat. However, pathological variants of anxiety can strongly impede the daily life of those affected. To unravel neurobiological mechanisms underlying normal anxiety as well as its pathological variations, animal models are indispensable tools. What are the characteristics of an ideal animal model? First, it should display reduced anxiety when treated with anxiolytics (predictive validity). Second, the behavioral response of an animal model to a threatening stimulus should be comparable to the response known for humans (face validity). And third, the mechanisms underlying anxiety as well as the psychological causes should be identical (construct validity). Meeting these three requirements is difficult for any animal model. Since both the physiological and the behavioral response to aversive (threatening) stimuli are similar in humans and animals, it can be assumed that animal models can serve at least two distinct purposes: as (1) behavioral tests to screen for potential anxiolytic and antidepressant effects of new drugs and (2) tools to investigate specific pathogenetic aspects of cardinal symptoms of anxiety disorders. The examples presented in this chapter have been selected to illustrate the potential as well as the caveats of current models and the emerging possibilities offered by gene technology. The main concepts in generating animal models for anxiety—that is, selective breeding of rat lines, experience-related models, genetically engineered mice, and phenotype-driven approaches—are concisely introduced and discussed. Independent of the animal model used, one major challenge remains, which is to reliably identify animal behavioral characteristics. Therefore, a description of behavioral expressions of anxiety in rodents as well as tests assays to measure anxiety-related behavior in these animals is also included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed FP, McLaughlin DP, Stanford SC, Stamford JA (2002) Maudsley reactive and non-reactive (MNRA) rats display behavioral contrasts on exposure to an open field, the elevated plus maze or the dark-light shuttle box. Abstract, FENS, Paris, France

    Google Scholar 

  • Ammassari-Teule A, Milhaud JM, Passino E, Restivo L, Lassalle JM (1999) Defective processing of contextual information may be involved in the poor performance of DBA/2 mice in spatial tasks. Behav Genet 29:283–289

    Article  Google Scholar 

  • Anisman H, Zalcman S, Shanks N, Zacharko RM (1991) Multisystem regulation of performance deficits induced by stressors: an animal model of depression. In: Boulton AA, Baker GB, Martin-Iverson MT (eds) Animal models in psychiatry, vol 2. Humana Press, Clifton, pp 1–59

    Google Scholar 

  • Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89:655–667

    Article  PubMed  Google Scholar 

  • Argyropoulus SV, Sandford JJ, Nutt DJ (2000) The psychobiology of anxiolytic drug. Part 2. Pharmacological treatments of anxiety. Pharmacol Ther 88:213–227

    Article  PubMed  Google Scholar 

  • Ashcroft GW, Walker LG, Lyle A(1993) A psychobiological model for panic: including models for the mechanisms involved in the regulation of mood and anxiety and implications for behavioral and pharmacological therapies. In: Leonard BE, Butler J, O'Rourke D, Fahy TJ (eds) Psychopharmacology of panic. Oxford University Press, Oxford, pp 131–143

    Google Scholar 

  • Avgustinovich DF, Lipina TV, Bondar NP, Alekseyenko OV, Kudriavtseva NN (2000) Features of the genetically defined anxiety in mice. Behav Genet 30:101–109

    Article  PubMed  Google Scholar 

  • Balling R (2001) ENU mutagenesis: analyzing gene function in mice. Annu Rev Genomics Hum Genet 2:463–492

    Article  PubMed  Google Scholar 

  • Barnett SA (1963) The rat: a studyin behavior. Metheun, London

    Google Scholar 

  • Beck KD, Luine VN (1999) Food deprivation modulates chronic stress on object recognition in male rats: role of monoamines and amino acids. Brain Res 830:56–71

    Article  PubMed  Google Scholar 

  • Belzung C (1999) Measuring rodent exploratory behavior. In: Crusio WE, Gerlai RT (eds) Handbook of molecular genetic techniques for brain and behavior research (techniques in the behavioral and neural sciences). Elsevier, Amsterdam, pp 738–749

    Google Scholar 

  • Belzung C, Berton F (1997) Further pharmacological validation of the BALB/c neophobia in the free exploratory paradigm as an animal model of anxiety. Behav Pharmacol 8:541–548

    PubMed  Google Scholar 

  • Belzung C, Beuzen A (1995) Link between emotional memory and anxiety states: a study by principal component analysis. Physiol Behav 58:111–118

    Article  PubMed  Google Scholar 

  • Belzung C, Griebel G (2001) Measurement of normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125:141–149

    Article  PubMed  Google Scholar 

  • Belzung C, Le Pape G (1994) Comparison of different behavioral test situations used in psychopharmacology for measurements of anxiety. Physiol Behav 56:623–628

    Article  PubMed  Google Scholar 

  • Belzung C, Le Guisquet AM, Crestani F (2000) Flumazenil induces benzodiazepine partial agonist-like effects in BALB/c but not C57BL/6 mice. Psychopharmacology (Berl) 148:24–32

    Article  PubMed  Google Scholar 

  • Berrettini WH, Harris N, Ferraro TN, Vogel WH (1994) Maudsley reactive and non-reactive rats differ in exploratory behavior but not learning. Psychiatr Genet 4:91–94

    PubMed  Google Scholar 

  • Bizard DA, Altman HJ, Freedman LS (1982) The peripheral sympathetic nervous system in rat strains selectively bred for differences in response to stress. Behav Neural Biol 34:319–325

    Article  PubMed  Google Scholar 

  • Blanchard DC, Griebel G, Blanchard RJ (2001a) Mouse defensive behavior: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 25:205–218

    Article  PubMed  Google Scholar 

  • Blanchard DC, Hynd AL, Minke KA, Minemoto T, Blanchard RJ (2001b) Human defense behaviors to threat scenarios show parallels to fear-and anxiety-related defense patterns of non-human mammals. Neurosci Biobehav Rev 25:761–770

    Article  PubMed  Google Scholar 

  • Blanchard DC, Griebel G, Blanchard RJ (2003) The mouse defense test battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol 463:97–116

    Article  PubMed  Google Scholar 

  • Blanchard RJ, Blanchard DC (1989) Anti-predator defense behaviors in a visible burrow system. J Comp Psychol 103:70–82

    Article  PubMed  Google Scholar 

  • Blanchard RJ, Yudko EB, Rodgers RJ, Blanchard DC (1993) Defense system psychopharmacology: an ethological approach to the pharmacology of fear and anxiety. Behav Brain Res 58:155–165

    Article  PubMed  Google Scholar 

  • Blanchard RJ, Griebel G, Henrie JA, Blanchard DC (1997) Differentiation of anxiolytic and panicolytic drugs by effects on rat and mouse defense test batteries. Neurosci Biobehav Rev 21:783–789

    Article  PubMed  Google Scholar 

  • Blizard DA, Adams N (2002) The Maudsley reactive and nonreactive strains: a new perspective. Behav Genet 32:277–299

    Article  PubMed  Google Scholar 

  • Boissier JR, Simon P, Soubrie P (1976) New approaches to the study of anxiety and anxiolytic drugs in animals. In: Airaksinen M (ed) CNS and behavioral pharmacology. Pergamon Press, New York, pp 213–222

    Google Scholar 

  • Bourin M, Hascoet M (2003) The mouse light/dark box test. Eur J Pharmacol 463:55–65

    Article  PubMed  Google Scholar 

  • Britton DR, Britton KT (1981) A sensitive open field measure of anxiolytic drug activity. Pharmacol Biochem Behav 15:577–582

    Article  PubMed  Google Scholar 

  • Broadhurst PL (1960) Experiments in psychogenetics: applications of biometrical genetics to inheritance of behavior. In: Eysenck HJ (ed) Experiments in personality: psychogenetics and psychopharmacology, vol. 1. Routledge and Kegan Paul, London, pp 1–102

    Google Scholar 

  • Broadhurst PL, Bignami G (1965) Correlative effects of psychogenetic selection: a study of the Roman high and low avoidance strains of rats. Behav Res Ther 2:273–280

    Article  Google Scholar 

  • Brown JS, Kalish HI, Farber IE (1951) Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol 1:317–328

    Google Scholar 

  • Brown SDM, Balling R (2001) Systematic approaches to mouse mutagenesis. Curr Opin Genet Dev 11:268–273

    Article  PubMed  Google Scholar 

  • Brown SDM, Hardisty RE (2003) Mutagenesis strategies for identifying novel loci associated with disease phenotypes. Semin Cell Dev Biol 14:19–24

    Article  PubMed  Google Scholar 

  • Cabib S, Puglisi-Allegra S, Ventura R (2002) The contribution of comparative studies in inbred strains of mice to the understanding of the hyperactive phenotype. Behav Brain Res 130:103–109

    Article  PubMed  Google Scholar 

  • Cahill J, McGaugh JL (1998) Mechanism of emotional arousal and lasting memory. Trends Neurosci 21:294–299

    Article  PubMed  Google Scholar 

  • Castanon N, Dulluc J, LeMoal M, Mormede P (1994) Maturation of the behavioral and neurocrine differences between the Roman rat lines. Physiol Behav 55:775–782

    Article  PubMed  Google Scholar 

  • Castanon N, Perez-Diaz F, Mormede P (1995) Genetic analysis of the relationship between behavioral and neurocrine traits in Roman high and low avoidance rat lines. Behav Genet 25:371–383

    Article  PubMed  Google Scholar 

  • Chaouloff F, Durand M, Mormede P (1997) Anxiety and anxiety-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light test. Behav Brain Res 85:27–35

    Article  PubMed  Google Scholar 

  • Cheeta S, Ruigt G, van Proosdij J, Willner P (1997) Changes in sleep architecture following chronic mild stress. Biol Psychiatry 41:419–427

    Article  PubMed  Google Scholar 

  • Clement Y, Proeschel MF, Bondoux D, Girard F, Launay JM, Chapouthier G (1997) Genetic factors regulate processes related to anxiety in mice. Brain Res 752:127–135

    Article  PubMed  Google Scholar 

  • Commissaris RL, Ellis DM, Hill TJ, Schefke DM, Becker CA, Fontana DJ (1990) Chronic antidepressant and clonidine treatment effects on conflict behavior in the rat. Horm Behav 37:167–176

    Google Scholar 

  • Conrad CD, Galea LAM, Kuroda Y, McEwen B (1996) Chronic stress impairs rat spatial memory on the y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 110:1321–1334

    Article  PubMed  Google Scholar 

  • Coplan JD, Andrewa MW, Rosenblum LA, Owens MJ, Freidman S, Gorman JM, Nemeroff CB (1996) Persistent elevations of cerebrospinalfluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders. Proc Natl Acad Sci USA 93:1619–1623

    Article  PubMed  Google Scholar 

  • Corda MG, Lecca D, Piras G, Di Chiara G, Giorgo O (1997) Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman low-avoidance rats. Behav Genet 27:527–536

    Article  PubMed  Google Scholar 

  • Crabbe JC (1986) Genetic differences in locomotor activity in mice. Pharmacol Biochem Behav 25:289–292

    Article  PubMed  Google Scholar 

  • Crawley JN (1999) Evaluating anxiety in rodents. In: Crusio WE, Gerlai RT (eds) Handbook of molecular genetic techniques for brain and behavior research (techniques in the behavioral and neural sciences). Elsevier, Amsterdam, pp 667–673

    Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LJ, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R(1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124

    Article  PubMed  Google Scholar 

  • Crawley LN, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13:167–170

    Article  Google Scholar 

  • Croiset G, Nijsen MJMA, Kamphuis PJGH (2000) Role of corticotropin-releasing factor, vasopressin and the autonomic nervous system in learning and memory. Eur J Pharmacol 405:225–234

    Article  PubMed  Google Scholar 

  • Cruz APM, Frei F, Graeff FG (1994) Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol Biochem Behav 49:171–176

    Article  PubMed  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  PubMed  Google Scholar 

  • Davis M, Falls WA, Campeau S, Kim M (1993) Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res 58:175–198

    Article  PubMed  Google Scholar 

  • De Pablo JM, Parra A, Segovia S, Guillarmón A (1989) Learned immobility explains the behavior of rats in the forced swimming test. Physiol Behav 46:229–237

    Article  PubMed  Google Scholar 

  • Dirks A, Fish EW, Kikusui T, van der Gugten J, Groenink L, Olivier B, Miczek KA (2002) Effects of corticotropin-releasing hormone on distress vocalizations and locomotion in maternally separated mouse pups. Pharmacol Biochem Behav 72:993–999

    Article  PubMed  Google Scholar 

  • Driscoll P, Bättig K (1982) Behavioral, emotional and neurochemical profiles of rats selected for extreme differences and active, two-way avoidance performance. In: Lieblich I (ed) Genetics of the brain. Elsevier, Amsterdam, pp 95–123

    Google Scholar 

  • DSM-IV (1994) American Psychiatric Association diagnostic and statistical manual of mental disorders. American Psychiatric Press, Washington

    Google Scholar 

  • Dulawa SC, Hen R, Scearce-Levie K, Geyer M (1997) Serotonin 1B receptor modulation of startle reactivity, habituation, and prepulse inhibition in wildtype and serotonin 1B knock-out mice. Neuroreport 132:125–134

    Google Scholar 

  • Ellis DM, Fontana DJ, McCloskey TC, Commissaris RL (1990) Chronic anxiolytic treatment effects on conflict behavior in the rat. Pharmacol Biochem Behav 37:177–186

    Article  PubMed  Google Scholar 

  • Escorihuela RM, Tobena A, Driscoll P, Fernandez-Teruel A (1995) Effects of training, early handling, and perinatal flumazenil on shuttle box acquisition in Roman low-avoidance rats: towards overcoming a genetic deficit. Neurosci Biobehav Rev 19:353–367

    Article  PubMed  Google Scholar 

  • Escorihuela RM, Fernandez-Teruel A, Gil L, Aguilar R, Tobena A, Driscoll P (1999) Inbred Roman high-and low-avoidance rats: differences in anxiety, novelty-seeking, and shuttlebox behavior. Physiol Behav 67:19–26

    Article  PubMed  Google Scholar 

  • Fernandez-Teruel A, Driscoll P, Gil L, Tobena A, Escorihuela RM (2002) Enduring effects of environmental enrichment on novelty seeking, saccharin and ethanol intake in two rat lines (RHA/Verh and RLA/Verh) differing in incentive-seeking behavior. Pharmacol Biochem Behav 73:225–231

    Article  PubMed  Google Scholar 

  • Ferre P, Fernandez-Teruel, Escorihuela RM, Driscoll P, Gercia E, Zapata A, Tabena A (1994) Struggling and flumazenil effects in the swimming test are related to the level of anxiety in mice. Neuropsychobiology 29:23–27

    PubMed  Google Scholar 

  • Ferre P, Fernandez-Teruel, Escorihuela RM, Driscoll P, Corda MG, Giorgo O, Tabena A (1995) Behavior of the Roman/Verh high-and low-avoidance rat lines in anxiety-tests: relationship with defecation and self-grooming. Physiol Behav 58:1209–1213

    Article  PubMed  Google Scholar 

  • File SE (1995) Animal models of different anxiety states. In: Biggio G, Sanna E, Costa E (eds) GABAa receptors and anxiety: from neurobiology to treatment. Raven Press, New York, pp 93–113

    Google Scholar 

  • File SE, Wardill AG (1975) Validity of head-dipping as a measure of exploration in a modified hole-board. Psychopharmacologia 44:53–59

    Article  PubMed  Google Scholar 

  • Fletcher PJ, Davies M (1990) Effects of 8-OH-DPAT, buspirone and ICS 205–930 on feeding in a novel environment: comparison with chlordiazepoxide and FG 1742. Psychopharmacology (Berl) 102:301–308

    PubMed  Google Scholar 

  • Flint J, Corley R, De Fries JC, Fulker DW, Gray JA, Miller S, Collins AC (1995) Asimple genetic basis for a complex psychological trait in laboratory mice. Science 269:1432–1435

    PubMed  Google Scholar 

  • Fontana DJ, Commissaris RL (1988) Effects of acute and chronic imipramine administration on conflict behavior in the rat: a potential ‘animal model’ for the study of panic disorder? Psychopharmacology (Berl) 95:147–150

    Article  PubMed  Google Scholar 

  • Fontana DJ, Carbary TJ, Commissaris RL (1989) Effects of acute and chronic antipanic drug administration on conflict behavior in the rat. Psychopharmacology (Berl) 98:157–162

    Article  PubMed  Google Scholar 

  • Geller I, Seifter J (1960) The effects of meptobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacology (Berl) 1:482–492

    Article  Google Scholar 

  • Gentsch C, Lichtsteiner M, Driscoll P, Feer H (1982) Differential hormonal and physiological responses to stress in Roman high-and low-avoidance rats. Physiol Behav 28:259–263

    Article  PubMed  Google Scholar 

  • Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19:177–181

    Article  PubMed  Google Scholar 

  • Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 787–798

    Google Scholar 

  • Gilbert P, Allan S (1998) The role of defeat and entrapment (arrested flight) in depression: an exploration of an evolutionary view. Psychol Med 28:585–598

    Article  PubMed  Google Scholar 

  • Gingrich JA, Hen R (2001) Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology (Berl) 155:1–10

    Article  PubMed  Google Scholar 

  • Giorgo O, Corda MG, Carboni G, Frau V, Valentini V, Di Chiara G (1997) Effects of cocaine and morphine in rats from two psychogenetically selected rat lines: a behavioral and brain dialysis study. Behav Genet 27:537–546

    Article  PubMed  Google Scholar 

  • Golani I, Kafkafi N, Drai D (1999) Phenotyping stereotypic behavior: collective variables, range of variation and predictability. Appl Anim Behav Sci 65:191–220

    Article  Google Scholar 

  • Graeff FG (2002) On serotonin and experimental anxiety. Psychopharmacology (Berl) 163:467–476

    Article  PubMed  Google Scholar 

  • Gray TS (1990) Amygdaloid CRF pathways: role in autonomic, neuroendocrine, and behavioral responses ot stress. In: De Souza EB, Nemeroff CB (eds) Annals of the New York Academy of Sciences. Corticotropin-releasing factor and cytokines: Proceedings of the Hans Selye Symposium on Neuroendocrinology and Stress, vol 697. New York Academy of Sciences, New York, pp 53–60

    Google Scholar 

  • Griebel G (1996) Variability in the effects of 5-HT related compounds in experimental models of anxiety: evidence for multiple mechanisms of 5-HT in anxiety or never ending story? Pol J Pharmacol 48:129–136

    PubMed  Google Scholar 

  • Griebel G, Moreau J-L, Jenck F, Martin JR, Misslin R (1993) Some critical determinants of the behavior of rats in the elevated plus-maze. Behav Process 29:37–48

    Article  Google Scholar 

  • Griebel G, Sanger DJ, Perrault G (1997) Genetic differences in the mouse defense test battery. Aggress Behav 23:10–31

    Article  Google Scholar 

  • Griebel G, Belzung C, Perrault G, Sanger DJ (2000) Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains in mice. Psychopharmacology (Berl) 148:164–170

    Article  PubMed  Google Scholar 

  • Hall CS (1936) Emotional behavior in the rat. III. The relationship between emotionality and ambulatory activity. J Comp Physiol Psychol 22:345–352

    Google Scholar 

  • Hall CS (1938) The inheritance of emotionality. Am Sci 26:17–27

    Google Scholar 

  • Handley SL, Mithani S (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze exploration model for “fear-motivated” behavior. Naunyn Schmiedebergs Arch Pharmacol 327:1–5

    Article  PubMed  Google Scholar 

  • Hascoet M, Bourin M, Dhonnchadha BAN (2001) The mouse light-dark paradigm: a review. Prog Neuropsychopharmacol Biol Psychiatry 25:141–166

    Article  PubMed  Google Scholar 

  • Henn FA, Johnson J, Edwards E, Anderson D (1985) Melancholia in rodents: neurobiology and pharmacology. Psychopharmacol Bull 21:443–446

    PubMed  Google Scholar 

  • Henn FA, Edwards E, Muneyyirci J (1993) Animal models in depression. Clin Neurosci 1:152–156

    Google Scholar 

  • Henniger MSH, Ohl F, Hölter SM, WeiÏenbacher P, Toschi N, Lörscher P, Wigger A, Spanagel R, Landgraf R (2000) Unconditioned anxiety and social behaviour in two rat lines selectively bred for high and low anxiety-related behaviour. Behav Brain Res 111:153–163

    Article  PubMed  Google Scholar 

  • Hijzen TH, Houtzager SW, Joordens RJ, Olivier B, Slangen JL (1995) Predictive validity of the potentiated startle response as a behavioral model for anxiolytic drugs. Psychopharmacology (Berl) 118:150–154

    PubMed  Google Scholar 

  • Hinde RA, Leighton-Shapiro ME, McGinnis L (1978) Effects of various types of separation experience on rhesus monkeys 5 months later. J Child Psychol Psychiatry 19:199–211

    PubMed  Google Scholar 

  • Hindmarch I (1998) Cognition and anxiety: the cognitive effects of anti-anxiety medication. Acta Psychiatr Scand 98:89–94

    Google Scholar 

  • Hodges H (1996) Maze procedures: the radial-arm and water maze compared. Cogn Brain Res 3:167–181

    Article  Google Scholar 

  • Hodges HM, Green SE, Crewes H, Mathers I (1981) Effects of chronic chlordiazepoxide treatment on novel and familiar food preference in rats. Psychopharmacology (Berl) 75:311–314

    Article  PubMed  Google Scholar 

  • Hogg S (1996) A review of the validity and variability of the elevated plus maze as an animal model of anxiety. Pharmacol Biochem Behav 54:21–30

    Article  PubMed  Google Scholar 

  • Holmes A (2001) Targeted gene mutation approaches to the study of anxiety-like behavior in mice. Neurosci Biobehav Rev 25:261–273

    Article  PubMed  Google Scholar 

  • Holsboer F (1995) Neuroendocrinology of mood disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 957–969

    Google Scholar 

  • Holsboer F (1997) Transgenic mouse models: new tools for psychiatric research. Neuroscientist 3:328–336

    Google Scholar 

  • Holsboer F (1999) The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 33:181–214

    Article  PubMed  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501

    Article  PubMed  Google Scholar 

  • Holsboer F, Lauer CJ, Schreiber W, Krieg JC (1995) Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for depression. Neuroendocrinology 62:659–664

    Google Scholar 

  • Hrabé de Angelis M, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch K, Jung M, Reis A, Richter T, Alessandrini F, Jakob T, Fuchs E, Kolb H, Kremmer E, Schaeble K, Rollinski B, Roscher A, Peters C, Meitinger T, Strom T, Steckler T, Holsboer F, Klopstock T, Gekeler T, Schindewolf C, Jung T, Avraham K, Behrendt H, Ring J, Zimmer A, Schughart K, Pfeffer K, Wolf E, Balling R (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25:444–447

    Article  PubMed  Google Scholar 

  • Jaenisch R (1998) Transgenic animals. Science 240:1468–1472

    Google Scholar 

  • Kalin NH, Shelton SE, Barksdale CM (1989) Behavioral and physiologic effects of CRH administration to infant primates undergoing maternal separation. Neuropsychopharmacology 2:97–104

    Article  PubMed  Google Scholar 

  • Keck ME, Welt T, Post A, Müller MB, Toschi N, Wigger A, Landgraf R, Holsboer F, Engelmann M (2001a) Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacology 24:337–349

    Article  PubMed  Google Scholar 

  • Keck ME, Welt T, Wigger A, Renner U, Engelmann M, Holsboer F, Landgraf R (2001b) The anxiolytic effect of the CRH1 receptor antagonist R121919 depends on innate emotionality in rats. Eur J Neurosci 13:373–380

    Article  PubMed  Google Scholar 

  • Keck ME, Wigger A, Welt T, Müller MB, Gesing A, Reul JMHM, Holsboer F, Landgraf R, Neumann ID (2002) Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: implications for pathogenesis of affective disorders. Neuropsychopharmacology 26:94–105

    Article  PubMed  Google Scholar 

  • Keck ME, Welt T, Müller MB, Uhr M, Ohl F, Wigger A, Toschi N, Holsboer F, Landgraf R (2003) Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of the antidepressant paroxetine in a psychopathological rat model. Neuropsychopharmacology 28:235–243

    Article  PubMed  Google Scholar 

  • Kelley AE (1993) Locomotor activity and exploration. In: Sahgal A (ed) Behavioural neuroscience: a practical approach. Oxford University Press, Oxford, pp 1–21

    Google Scholar 

  • Kendler KS (2002) Psychiatric genetics: an intellectual journey. The Salmon Lecture. Clin Neurosci Res 2:110–119

    Article  Google Scholar 

  • Kopp C, Vogel E, Misslin R (1999) Comparative study of emotional behavior in three inbred strains of mice. Behav Processes 47:161–174

    Article  Google Scholar 

  • Landgraf R, Wigger A (2002) HAB and LAB rats as a psychological animal model of extremes in innate anxiety. Behav Genet 32:301–314

    Article  PubMed  Google Scholar 

  • Landgraf R, Wigger A, Holsboer F, Neumann ID (1999) Hyper-reactive hypothalamopituitary adrenocortical axis in rats bred for high anxiety-related behaviour. J Neuroendocrinol 11:405–407

    Article  PubMed  Google Scholar 

  • Lecrubier Y, Ustun TB (1998) Panic and depression: a worldwide primary care perspective. Int Clin Psychopharmacol 13:S7–S11

    Google Scholar 

  • Lee WR, Arbour P, Fossett NG, Kilroy G, Mahmoud J, McDaniel ML, Tucker A (1989) Sequence-analysis of X-ray and ENU induced mutations at the ADH locus in Drosophila-melanogaster. Genetics 122:S38

    Google Scholar 

  • Liebsch G, Linthorst ACE, Neumann ID, Reul JMHM, Holsboer F, Landgraf R (1998) Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high and low anxiety-related behavior. Neuropsychopharmacology 19:381–396

    Article  PubMed  Google Scholar 

  • Lister RG (1990) Ethologically based animal models of anxiety disorders. Pharmacol Ther 46:321–340

    Article  PubMed  Google Scholar 

  • Livesey PJ (1986) Learning and emotion: a biological synthesis. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    Article  PubMed  Google Scholar 

  • Martin P (1998) Animal models sensitive to anti-anxiety agents. Acta Psychiatr Scand Suppl 393:74–80

    PubMed  Google Scholar 

  • McGaugh JL, Cahill L, Roozendaal B (1996) Involvement of the amygdala in memory storage: interaction with other brain systems. Proc Natl Acad Sci USA 93:13508–13514

    Article  PubMed  Google Scholar 

  • McKinney WT Jr, Bunney WE Jr (1969) Animal model of depression: I. Review of evidence: implications for research. Arch Gen Psychiatry 21:240–248

    PubMed  Google Scholar 

  • McNaughton N (1997) Cognitive dysfunction resulting from hippocampal hyperactivity—a possible cause of anxiety disorder? Pharmacol Biochem Behav 56:603–611

    Article  PubMed  Google Scholar 

  • McQuade R, Stanford SC (2001) Differences in centralnoradrenergic and behavioral responses of Maudsley non-reactive and Maudsley reactive inbred rats on exposure to an aversive novel environment. J Neurochem 76:21–28

    Article  PubMed  Google Scholar 

  • Menard J, Treit D (1999) Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci Biobehav Rev 23:591–631

    Article  PubMed  Google Scholar 

  • Millan MJ, Brocco M (2003) The Vogel conflict test: procedural aspects, gamma-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol 463:67–96

    Article  PubMed  Google Scholar 

  • Montgomery KC (1958) The relation between fear induced by novel stimulation and exploratory behavior. J Comp Physiol Psychol 48:254–260

    Google Scholar 

  • Montkowski A, Pöttig M, Mederer A, Holsboer F (1997) Behavioral performance in three substrains of mouse strain 129. Brain Res 762:12–18

    Article  PubMed  Google Scholar 

  • Moreau JL, Jenck F, Martin JR, Mortas P, Haefely WE (1992) Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation behavior in rats. Eur Neuropsychopharmacol 2:43–49

    Article  PubMed  Google Scholar 

  • Müller MB, Keck ME (2002) Genetically engineered mice for studies of stress-related clinical conditions. J Psychiatr Res 36:53–76

    Article  PubMed  Google Scholar 

  • Nemeroff CB (2002) Comorbidity of mood and anxiety disorders: the rule, not the exception? Am J Psychiatry 159:3–4

    Article  PubMed  Google Scholar 

  • Nesse RM (1999) Proximate and evolutionary studies of anxiety, stress and depression: synergy of interface. Neurosci Biobehav Rev 23:895–903

    Article  PubMed  Google Scholar 

  • Nielsen CK, Arnt J, Sanchez C (2000) Intracranial self-stimulation and sucrose intake differ as hedonic measures following chronic mild stress: interstrain and interindividual differences. Behav Brain Res 107:21–33

    Article  PubMed  Google Scholar 

  • Nolan PM, Peters J, Strivens M, Rogers D, Hagan J, Spurr N, Gray IC, Vizor L, Brooker D, Whitehill E, Washbourne R, Hough T, Greenaway S, Hewitt M, Liu X, McCormack S, Pickford K, Selley R, Wells C, Tymowska-Lalanne Z, Roby P, Glenister P, Thornton C, Thaung C, Stevenson JA, Arkell R, Mburu P, Hardisty R, Kiernan A, Erven A, Steel KP, Voegeling S, Guenet JL, Nickols C, Sadri R, Nasse M, Isaacs A, Davies K, Browne M, Fisher EM, Martin J, Rastan S, Brown SD, Hunter J (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25:440–443

    Article  PubMed  Google Scholar 

  • Ohl F, Holsboer F, Landgraf R (2001a) The modified hole board as differential screen for behavior in rodents. Behav Res Methods Instrum Comput 33:392–397

    PubMed  Google Scholar 

  • Ohl F, Sillaber I, Binder E, Keck ME, Holsboer F (2001b) Differential analysis of basal behavior and diazepam-induced alterations in C57BL/6 and BALB/c mice using the modified hole board. J Psychiatr Res 35:147–154

    Article  PubMed  Google Scholar 

  • Ohl F, Toschi N, Wigger A, Henniger MSH, Landgraf R (2001c) Dimensions of emotionality in an animal model of inborn hyperanxiety. Behav Neurosci 115:429–436

    Article  PubMed  Google Scholar 

  • Ohl F, Roedel A, Storch C, Holsboer F, Landgraf R (2002) Cognitive performance in rats differing in their inborn anxiety. Behav Neurosci 116:464–471

    PubMed  Google Scholar 

  • Ohl F, Roedel A, Binder E, Holsboer F (2003) Impact of high and low anxiety on cognitive performance in a modified hole board test in inbred mice strains C57BL/6 and DBA/2. Eur J Neurosci 17:128–136

    Article  PubMed  Google Scholar 

  • Olivier B, Pattij T, Wood SJ, Oosting R, Sarnyai Z, Toth M (2001) The 5-HT1A receptor knockout mouse and anxiety. Behav Pharmacol 12:439–450

    PubMed  Google Scholar 

  • Overmier JB, Seligman MEP (1967) Effects of inescapable shock upon subsequent escape and avoidance learning. J Comp Physiol Psychol 63:28–33

    PubMed  Google Scholar 

  • Overstreet DH (1993) The Flinders sensitive line rats: an genetic animal model of depression. Neurosci Biobehav Rev 17:51–68

    PubMed  Google Scholar 

  • Overstreet DH, Russel RW, Helps SC, Messenger M (1979) Selective breeding for sensitivity to the anticholinesterase, DFP. Psychopharmacology (Berl) 65:15–20

    Article  PubMed  Google Scholar 

  • Overstreet DH, Rezvani AH, Janowsky DS (1992) Maudsley reactive and nonreactive rats differ only in some tasks reflecting emotionality. Physiol Behav 52:149–152

    Article  PubMed  Google Scholar 

  • Overstreet DH, Pucilowski O, Rezvani AH, Janowsky DS (1995) Administration of antidepressants, diazepam and psychomotor stimulants further confirms the utility of Flinders sensitive line rats as an animal model of depression. Psychopharmacology (Berl) 121:27–37

    PubMed  Google Scholar 

  • Parmigiani S, Palanza P, Rodgers J, Ferrari PF (1999) Selection, evolution of behavior and animal models in behavioral neuroscience. Neurosci Biobehav Rev 23:957–970

    Article  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  PubMed  Google Scholar 

  • Picciotto MR (1999) Knock-out mouse models used to study neurobiological systems. Crit Rev Neurobiol 13:103–149

    PubMed  Google Scholar 

  • Porsolt RC, Chermat R, Lenegre A, Avril I, Janvier S, Steru L (1987) Use of the automated tail suspension test for the primary screening of psychotropic agents. Arch Int Pharmacodyn Ther 288:11–30

    PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  PubMed  Google Scholar 

  • Ramos A, Mormede P (1998) Stress and emotionality: a multidimensional and genetic approach. Neurosci Biobehav Rev 22:33–57

    Google Scholar 

  • Reul JMHM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2:23–33

    PubMed  Google Scholar 

  • Rodgers RJ, Cole JC (1994) The elevated plus-maze: pharmacology, methodology and ethology. In: Cooper SJ, Hendrie CA (eds) Ethology and psychopharmacology. John Wiley and Sons, Chichester, pp 9–44

    Google Scholar 

  • Rodgers RJ, Johnson NJT (1995) Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol Biochem Behav 52:297–303

    Article  PubMed  Google Scholar 

  • Rodgers RJ, Cole JC, Cobain MR, Daly P, Doran PJ, Eells JR, Wallis P (1992) Anxiogenic-like effects of fluprazine and eltoprazine in the mouse elevated plus maze: profile comparison with 8-OH-DPAT, TFMPP and mCPP. Behav Pharmacol 3:621–624

    PubMed  Google Scholar 

  • Rodgers RJ, Cao BJ, Dalvi A, Holmes A (1997) Animal models of anxiety: an ethological perspective. Braz J Med Biol Res 30:289–304

    Article  PubMed  Google Scholar 

  • Rogers DC, Jones DNC, Nelson PR, Jones CM, Quilter CA, Robinson TL, Hagan JJ (1999) Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res 105:207–217

    Article  PubMed  Google Scholar 

  • Rosen JB, Schulkin J (1998) From normal fear to pathological anxiety. Psychol Rev 105:325–350

    Article  PubMed  Google Scholar 

  • Rossi-Arnaud C, Ammassari-Teule M (1998) What do comparative studies of inbred mice add to current investigations of the neural basis of spatial behaviours? Exp Brain Res 123:36–44

    Article  PubMed  Google Scholar 

  • Saudou F, Ait Amara D, Dierich A, Lemeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1b receptor. Science 265:1875–1878

    PubMed  Google Scholar 

  • Schmidt M, Oitzl MS, Levine S, de Kloet ER (2002) The HPA system during the postnatal development of CD1 mice and the effects of maternal deprivation. Brain Res Dev Brain Res 139:39–49

    Article  PubMed  Google Scholar 

  • Seligman MEP, Beagley G (1975) Learned helplessness in the rat. J Comp Physiol Psychol 88:534–541

    PubMed  Google Scholar 

  • Sheldon MH (1968) Exploratory behaviour: the inadequacy of activity measures. Psychol Sci 11:38

    Google Scholar 

  • Shephard JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT (1994) Behavioral and pharmacological characterization of the elevated “zero-maze” as an animal model of anxiety. J Psychopharmacol 116:56–64

    Google Scholar 

  • Sillaber I, Rammes G, Zimmermann S, Mahal B, Zieglgänsberger W, Wurst W, Holsboer F, Spanagel R (2002) Enhanced and delayed stress-induced alcohol drinking in mice lacking a functional CRHR 1 receptor. Science 296:931–933

    Article  PubMed  Google Scholar 

  • Soubrie P, Kulkarni S, Simon P, Boissier JR (1975) Effets des anxiolytiques sur la prose de nourriture des rats et des souris placés en situation nouvelle ou familière. Psychopharmacologia 45:203–210

    Article  PubMed  Google Scholar 

  • Stefanski R, Paleijko W, Bidzinski A, Kostowski W, Plaznik A (1993) Serotonergic innervation of the hippocampus and nucleus-accumbens septi and the anxiolytic-like action of the 5-HT3 receptor antagonist. Neuropharmacology 32:987–993

    Article  PubMed  Google Scholar 

  • Steimer T, Escorihuela RM, Fernandez-Teruel A, Driscoll P (1998) Long-term behavioral and neurocrine changes in Roman high-(RHA/Verh) and low-(RLA/Verh) avoidance rats following neonatal handling. Int J Dev Neurosci 16:165–174

    Article  PubMed  Google Scholar 

  • Stenzel-Poore P, Heinrichs SC, Rivest S, Koob GF, Vale WW (1994) Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 14:2579–2584

    PubMed  Google Scholar 

  • Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546

    Article  PubMed  Google Scholar 

  • Thierry B, Steru L, Chermat R, Simon P (1984) Searching-waiting strategy: a candidate for an evolutionary model of depression? Behav Neural Biol 41:180–189

    Article  PubMed  Google Scholar 

  • Thinus-Blanc C, Save E, Rossi-Arnaud C, Tozzi A, Ammassari-Teule M (1996) The differences shown by C57BL/6 and DBA/2 inbred mice in detecting spatial novelty are subserved by a different hippocampal and parietal cortex interplay. Behav Brain Res 80:33–40

    Article  PubMed  Google Scholar 

  • Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JMHM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19:162–166

    Article  PubMed  Google Scholar 

  • Tolman EC (1924) The inheritance of maze-learning ability in rats. J Comp Psychol 4:1–18

    Google Scholar 

  • Toth M (2003) 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur J Pharmacol 463:177–184

    Article  PubMed  Google Scholar 

  • Treit D, Fundytus M (1989) Thigmotaxis as a test of anxiolytic activity in rats. Pharmacol Biochem Behav 31:959–962

    Article  Google Scholar 

  • Trullas R, Skolnick P (1993) Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacology (Berl) 111:323–331

    PubMed  Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    PubMed  Google Scholar 

  • Vogel JR, Beer B, Clody DE (1971) A simple and reliable conflict procedure for testing antianxiety agents. Psychopharmacology (Berl) 21:1–7

    Article  Google Scholar 

  • Walker CD, Rivest RW, Meaney MJ, Aubert ML (1989) Differential activation of the pituitary-adrenocortical axis after stress in the rat: use of two genetically selected lines (Roman low-and high-avoidance rats) as a model. J Endocrinol 123:477–485

    PubMed  Google Scholar 

  • Weiss JM (1968) Effects of coping on stress. J Comp Physiol Psychol 65:251–260

    PubMed  Google Scholar 

  • Weiss JM (1980) Coping behavior: explaining behavioral depression following uncontrollable stressful events. Behav Res Ther 18:485–504

    Article  Google Scholar 

  • Weiss JM (1991) Stress-induced depression: critical neurochemical and electrophysiological changes. In: Madden J IV (ed) Neurobiology and learning. Raven Press, New York, pp 123–154

    Google Scholar 

  • Weiss SM, Wadsworth G, Fletcher A, Dourish CT (1998) Utility of ethological analysis to overcome locomotor confounds in elevated maze models of anxiety. Neurosci Biobehav Rev 23:265–271

    Article  PubMed  Google Scholar 

  • West PA (1990) Neurobehavioral studies of forced swimming. The role of learning and memory in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 14:863–875

    Article  PubMed  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329

    Article  Google Scholar 

  • Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534

    PubMed  Google Scholar 

  • Wilson JH (2000) A conspecific attenuates prolactin responses to open-field exposure in rats. Horm Behav 38:39–43

    Article  PubMed  Google Scholar 

  • Wurst W, Rossant J, Prideaux V, Kownacka M, Joyner A, Hill DP, Guillemot F, Gasca S, Cado D, Auerbach A, Ang SL (1995) A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics 139:889–899

    PubMed  Google Scholar 

  • Zangen A, Overstreet DH, Yadid G (1997) High serotonin and 5-hydroxyindoleacetic acid levels in limbic brain regions in a rat model of depression: normalization by chronic antidepressant treatment. J Neurochem 69:2477–2483

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohl, F. (2005). Animal Models of Anxiety. In: Holsboer, F., Ströhle, A. (eds) Anxiety and Anxiolytic Drugs. Handbook of Experimental Pharmacology, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28082-0_2

Download citation

Publish with us

Policies and ethics