Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 169))

Abstract

Learning and memory processes are thought to underlie a variety of human psychiatric disorders, including generalised anxiety disorder and post-traumatic stress disorder. Basic research performed in laboratory animals may help to elucidate the aetiology of the respective diseases. This chapter gives a short introduction into theoretical and practical aspects of animal experiments aimed at investigating acquisition, consolidation and extinction of aversive memories. It describes the behavioural paradigms most commonly used as well as neuroanatomical, cellular and molecular correlates of aversive memories. Finally, it discusses clinical implications of the results obtained in animal experiments in respect to the development of novel pharmacotherapeutic strategies for the treatment of human patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel T, Kandel E (1998) Positive and negative regulatory mechanisms that mediate long-term memory storage. Brain Res Brain Res Rev 26:360–378

    Article  PubMed  Google Scholar 

  • Adamec R, Young B (2000) Neuroplasticity in specific limbic system circuits may mediate specific kindling induced changes in animal affect-implications for understanding anxiety associated with epilepsy. Neurosci Biobehav Rev 24:705–723

    Article  PubMed  Google Scholar 

  • Adolphs R (2002) Neural systems for recognizing emotion. Curr Opin Neurobiol 12:169–177

    Article  PubMed  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  PubMed  Google Scholar 

  • Ambrogi Lorenzini CG, Baldi E, Bucherelli C, Sacchetti B, Tassoni G (1999) Neural topography and chronology of memory consolidation: a review of functional inactivation findings. Neurobiol Learn Mem 71:1–18

    Article  PubMed  Google Scholar 

  • Anderson KV (2000) Finding the genes that direct mammalian development: ENU mutagenesis in the mouse. Trends Genet 16:99–102

    Article  PubMed  Google Scholar 

  • Andrews JS (1996) Possible confounding influence of strain, age and gender on cognitive performance in rats. Brain Res Cogn Brain Res 3:251–267

    Article  PubMed  Google Scholar 

  • Ballenger JC, Davidson JR, Lecrubier Y, Nutt DJ, Foa EB, Kessler RC, McFarlane AC, Shalev AY (2000) Consensus statement on posttraumatic stress disorder from the International Consensus Group on Depression and Anxiety. J Clin Psychiatry 61Suppl 5:60–66

    PubMed  Google Scholar 

  • Baum M (1973) Extinction of avoidance in rats: the effects of chlorpromazine and methylphenidate administered in conjunction with flooding response (prevention). Behav Res Ther 11:165–169

    PubMed  Google Scholar 

  • Berger TW, Alger B, Thompson RF (1976) Neuronal substrate of classical conditioning in the hippocampus. Science 192:483–485

    PubMed  Google Scholar 

  • Berman DE, Dudai Y (2001) Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291:2417–2419

    Article  PubMed  Google Scholar 

  • Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8:229–242

    Article  PubMed  Google Scholar 

  • Bourtchouladze R, Abel T, Berman N, Gordon R, Lapidus K, Kandel ER (1998) Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn Mem 5:365–374

    PubMed  Google Scholar 

  • Bouton ME, Swartzentruber D (1991) Sources of relapse after extinction in Pavlovian and instrumental conditioning. Clin Psychol Rev 11:123–140

    Article  Google Scholar 

  • Bouton ME, Nelson JB, Rosas JM (1999) Stimulus generalization, context change, and forgetting. Psychol Bull 125:171–186

    Article  PubMed  Google Scholar 

  • Bouton ME, Mineka S, Barlow DH (2001) A modern learning theory perspective on the etiology of panic disorder. Psychol Rev 108:4–32

    Article  PubMed  Google Scholar 

  • Braunewell KH, Manahan-Vaughan D (2001) Long-term depression: a cellular basis for learning? Rev Neurosci 12:121–140

    PubMed  Google Scholar 

  • Brown SD, Balling R (2001) Systematic approaches to mouse mutagenesis. Curr Opin Genet Dev 11:268–273

    Article  PubMed  Google Scholar 

  • Bucan M, Abel T (2002) The mouse: genetics meets behaviour. Nat Rev Genet 3:114–123

    Article  PubMed  Google Scholar 

  • Cahill L, McGaugh JL (1998) Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci 21:294–299

    Article  PubMed  Google Scholar 

  • Cahill L, Weinberger NM, Roozendaal B, McGaugh JL (1999) Is the amygdala a locus of “conditioned fear”? Some questions and caveats. Neuron 23:227–228

    Article  PubMed  Google Scholar 

  • Cardin JA, Abel T (1999) Memory suppressor genes: enhancing the relationship between synaptic plasticity and memory storage. J Neurosci Res 58:10–23

    Article  PubMed  Google Scholar 

  • Charney DS, Deutch A (1996) A functional neuroanatomy of anxiety and fear: implications for the pathophysiology and treatment of anxiety disorders. Crit Rev Neurobiol 10:419–446

    PubMed  Google Scholar 

  • Clayton DF (2000) The genomic action potential. Neurobiol Learn Mem 74:185–216

    Article  PubMed  Google Scholar 

  • Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  PubMed  Google Scholar 

  • Collins DR, Pare D (2000) Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(−). Learn Mem 7:97–103

    PubMed  Google Scholar 

  • Cook MN, Bolivar VJ, McFadyen MP, Flaherty L (2002) Behavioral differences among 129 substrains: implications for knockout and transgenic mice. Behav Neurosci 116:600–611

    PubMed  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124

    Article  PubMed  Google Scholar 

  • D'Agata V, Cavallaro S (2002) Gene expression profiles—a new dynamic and functional dimension to the exploration of learning and memory. Rev Neurosci 13:209–219

    PubMed  Google Scholar 

  • Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psychol Bull 96:518–559

    Article  PubMed  Google Scholar 

  • Davis M (2000) The role of the amygdala in conditioned and unconditioned fear and anxiety. In: Aggleton JP (ed) The amygdala. A functional analysis. Oxford University Press, New York, p 213–287

    Google Scholar 

  • Davis M, Myers KM (2002) The role of glutamate and gamma-aminobutyric acid in fear extinction: clinical implications for exposure therapy. Biol Psychiatry 52:998–1007

    Article  PubMed  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34

    Article  PubMed  Google Scholar 

  • Davis M, Hitchcock JM, Bowers MB, Berridge CW, Melia KR, Roth RH (1994) Stress-induced activation of prefrontal cortex dopamine turnover: blockade by lesions of the amygdala. Brain Res 664:207–210

    Article  PubMed  Google Scholar 

  • Debiec J, LeDoux JE, Nader K (2002) Cellular and systems reconsolidation in the hippocampus. Neuron 36:527–538

    Article  PubMed  Google Scholar 

  • Denny P, Justice MJ (2000) Mouse as the measure of man? Trends Genet 16:283–287

    Article  PubMed  Google Scholar 

  • Dickinson A (1980) Contemporary animal learning theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Dolan RJ (2002) Emotion, cognition, and behavior. Science 298:1191–1194

    Article  PubMed  Google Scholar 

  • Doyere V, Burette F, Negro CR, Laroche S (1993) Long-term potentiation of hippocampal afferents and efferents to prefrontal cortex: implications for associative learning. Neuropsychologia 31:1031–1053

    Article  PubMed  Google Scholar 

  • Dubnau J, Tully T (1998) Gene discovery in Drosophila: new insights for learning and memory. Annu Rev Neurosci 21:407–444

    Article  PubMed  Google Scholar 

  • Dudai Y (1989) The neurobiology of memory—concepts, findings, trends. Oxford University Press, New York

    Google Scholar 

  • Edeline JM (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 57:165–224

    Article  PubMed  Google Scholar 

  • Eichenbaum H, Cohen NJ (2001) From conditioning to conscious recollection. Memory systems of the brain. Oxford University Press, New York

    Google Scholar 

  • Eisenberg M, Kobilo T, Berman DE, Dudai Y (2003) Stability of retrieved memory: inverse correlation with trace dominance. Science 301:1102–1104

    Article  PubMed  Google Scholar 

  • Fanselow MS (1994) Neural organization of the defensive behavior system responsible for fear. Psychon Bull Rev 1:429–438

    Google Scholar 

  • Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232

    Article  PubMed  Google Scholar 

  • Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32:911–926

    Article  PubMed  Google Scholar 

  • Foa EB (2000) Psychosocial treatment of posttraumatic stress disorder. J Clin Psychiatry 61[Suppl] 5:43–48

    Google Scholar 

  • Freeman FM, Rose SP, Scholey AB (1995) Two time windows of anisomycin-induced amnesia for passive avoidance training in the day-old chick. Neurobiol Learn Mem 63:291–295

    Article  PubMed  Google Scholar 

  • Frey U, Morris RG (1998) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21:181–188

    Article  PubMed  Google Scholar 

  • Garcia R (2002) Stress, synaptic plasticity, and psychopathology. Rev Neurosci 13:195–208

    PubMed  Google Scholar 

  • Garcia R, Vouimba RM, Baudry M, Thompson RF (1999) The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402:294–296

    Article  PubMed  Google Scholar 

  • Geinisman Y (2000) Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb Cortex 10:952–962

    Article  PubMed  Google Scholar 

  • Genoux D, Haditsch U, Knobloch M, Michalon A, Storm D, Mansuy IM (2002) Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418:970–975

    Article  PubMed  Google Scholar 

  • Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? [see comments] [published erratum appears in Trends Neurosci 1996 Jul;19(7):271]. Trends Neurosci 19:177–181

    Article  PubMed  Google Scholar 

  • Gerlai R (1998) Contextual learning and cue association in fear conditioning in mice: a strain comparison and a lesion study. Behav Brain Res 95:191–203

    Article  PubMed  Google Scholar 

  • Gerlai R (2001) Gene targeting: technical confounds and potential solutions in behavioral brain research. Behav Brain Res 125:13–21

    Article  PubMed  Google Scholar 

  • Gerlai R (2002) Hippocampal LTP and memory in mouse strains: is there evidence for a causal relationship? Hippocampus 12:657–666

    Article  PubMed  Google Scholar 

  • Geschwind DH (2000) Mice, microarrays, and the genetic diversity of the brain. Proc Natl Acad Sci U S A 97:10676–10678

    Article  PubMed  Google Scholar 

  • Gewirtz JC, Falls WA, Davis M (1997) Normal conditioned inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medical prefrontal cortex in rats. Behav Neurosci 111:712–726

    Article  PubMed  Google Scholar 

  • Gewirtz JC, McNish KA, Davis M (2000) Is the hippocampus necessary for contextual fear conditioning? Behav Brain Res 110:83–95

    Article  PubMed  Google Scholar 

  • Gingrich JA, Hen R (2000) The broken mouse: the role of development, plasticity and environment in the interpretation of phenotypic changes in knockout mice. Curr Opin Neurobiol 10:146–152

    Article  PubMed  Google Scholar 

  • Goosens KA, Maren S (2002) Long-term potentiation as a substrate for memory: evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning. Hippocampus 12:592–599

    Article  PubMed  Google Scholar 

  • Grace AA, Rosenkranz JA (2002) Regulation of conditioned responses of basolateral amygdala neurons. Physiol Behav 77:489–493

    Article  PubMed  Google Scholar 

  • Graves L, Pack A, Abel T (2001) Sleep and memory: a molecular perspective. Trends Neurosci 24:237–243

    Article  PubMed  Google Scholar 

  • Gray JA, McNaughton N (2000) The neuropsychology of anxiety. An enquiry into the functions of the septo-hippocampal system, 2nd edn. Oxford Psychology Series No. 33. Oxford University Press, New York

    Google Scholar 

  • Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400

    Article  PubMed  Google Scholar 

  • Hall J, Thomas KL, Everitt BJ (2001a) Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories. J Neurosci 21:2186–2193

    PubMed  Google Scholar 

  • Hall J, Thomas KL, Everitt BJ (2001b) Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur J Neurosci 13:1453–1458

    Article  PubMed  Google Scholar 

  • Hannesson DK, Corcoran ME (2000) The mnemonic effects of kindling. Neurosci Biobehav Rev 24:725–751

    Article  PubMed  Google Scholar 

  • Hebb DO (1949) Organization of behavior: a neuropsychological theory. John Wiley and Sons, New York, p 62

    Google Scholar 

  • Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28:370–490

    Article  PubMed  Google Scholar 

  • Hölscher C (1997) Long-term potentiation: a good model for learning and memory? Prog Neuropsychopharmacol Biol Psychiatry 21:47–68

    Article  PubMed  Google Scholar 

  • Huang AM, Wang HL, Tang YP, Lee EH (1998) Expression of integrin-associated protein gene associated with memory formation in rats. J Neurosci 18:4305–4313

    PubMed  Google Scholar 

  • Huang CC, Hsu KS (2001) Progress in understanding the factors regulating reversibility of long-term potentiation. Rev Neurosci 12:51–68

    PubMed  Google Scholar 

  • Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68:285–316

    Article  PubMed  Google Scholar 

  • Izquierdo I, Medina JH (1998) On brain lesions, the milkman and Sigmunda. Trends Neurosci 21:423–426

    Article  PubMed  Google Scholar 

  • Izquierdo I, Schroder N, Netto CA, Medina JH (1999) Novelty causes time-dependent retrograde amnesia for one-trial avoidance in rats through NMDA receptor-and CaMKII-dependent mechanisms in the hippocampus. Eur J Neurosci 11:3323–3328

    Article  PubMed  Google Scholar 

  • Izquierdo LA, Barros DM, Vianna MR, Coitinho A, deDavid e Silva T, Choi H, Moletta B, Medina JH, Izquierdo I (2002) Molecular pharmacological dissection of short-and long-term memory. Cell Mol Neurobiol 22:269–287

    Article  PubMed  Google Scholar 

  • Jacobs WJ, Nadel L (1985) Stress-induced recovery of fears and phobias. Psychol Rev 92:512–531

    Article  PubMed  Google Scholar 

  • Jarrard LE (2001) Retrograde amnesia and consolidation: anatomical and lesion considerations. Hippocampus 11:43–49

    Article  PubMed  Google Scholar 

  • Jarrard LE (2002) Use of excitotoxins to lesion the hippocampus: update. Hippocampus 12:405–414

    Article  PubMed  Google Scholar 

  • Kamme F, Salunga R, Yu J, Tran DT, Zhu J, Luo L, Bittner A, Guo HQ, Miller N, Wan J, Erlander M (2003) Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J Neurosci 23:3607–3615

    PubMed  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  Google Scholar 

  • Kida S, Josselyn SA, de Ortiz SP, Kogan JH, Chevere I, Masushige S, Silva AJ (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348–355

    Article  PubMed  Google Scholar 

  • Killcross S, Robbins TW, Everitt BJ (1997) Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 388:377–380

    Article  PubMed  Google Scholar 

  • Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256:675–677

    PubMed  Google Scholar 

  • Korte SM (2001) Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev 25:117–142

    Article  PubMed  Google Scholar 

  • Lamprea MR, Cardenas FP, Vianna DM, Castilho VM, Cruz-Morales SE, Brandao ML (2002) The distribution of fos immunoreactivity in rat brain following freezing and escape responses elicited by electrical stimulation of the inferior colliculus. Brain Res 950:186–194

    Article  PubMed  Google Scholar 

  • Lechner HA, Squire LR, Byrne JH (1999) 100 years of consolidation—remembering Muller and Pilzecker. Learn Mem 6:77–87

    PubMed  Google Scholar 

  • Ledgerwood L, Richardson R, Cranney J (2004) d-Cycloserine and the facilitation of extinction of conditioned fear: consequences for reinstatement. Behav Neurosci 118:505–513

    Article  PubMed  Google Scholar 

  • LeDoux J (1996) The emotional brain. The mysterious underpinnings of emotional life. Simon and Schuster, New York, pp 175–190

    Google Scholar 

  • LeDoux J (1998) Fear and the brain: where have we been, and where are we going? [see comments]. Biol Psychiatry 44:1229–1238

    Article  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  Google Scholar 

  • Levsky JM, Singer RH (2003) Gene expression and the myth of the average cell. Trends Cell Biol 13:4–6

    Article  PubMed  Google Scholar 

  • Levy BJ, Anderson MC (2002) Inhibitory processes and the control of memory retrieval. Trends Cogn Sci 6:299–305

    Article  PubMed  Google Scholar 

  • Lin CH, Lee CC, Gean PW (2003a) Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol 63:44–52

    PubMed  Google Scholar 

  • Lin CH, Yeh SH, Leu TH, Chang WC, Wang ST, Gean PW (2003b) Identification of calcineurin as a key signal in the extinction of fear memory. J Neurosci 23:1574–1579

    PubMed  Google Scholar 

  • Lu KT, Walker DL, Davis M (2001) Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J Neurosci 21:RC162

    Google Scholar 

  • Mackintosh NJ (1974) The psychology of animal learning. Academic Press, London

    Google Scholar 

  • Mackintosh NJ (1983) Conditioning and associative learning. Oxford University Press, New York

    Google Scholar 

  • Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    Article  PubMed  Google Scholar 

  • Manahan-Vaughan D, Braunewell KH (1999) Novelty acquisition is associated with induction of hippocampal long-term depression. Proc Natl Acad Sci U S A 96:8739–8744

    Article  PubMed  Google Scholar 

  • Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931

    Article  PubMed  Google Scholar 

  • Maren S, Holt W (2000) The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res 110:97–108

    Article  PubMed  Google Scholar 

  • Marks I, Tobena A (1990) Learning and unlearning fear: a clinical and evolutionary perspective. Neurosci Biobehav Rev 14:365–384

    PubMed  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, DiMarzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    Article  PubMed  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  PubMed  Google Scholar 

  • Matthies H (1989) In search of cellular mechanisms of memory. Prog Neurobiol 32:277–349

    Article  PubMed  Google Scholar 

  • Mayford M, Kandel ER (1999) Genetic approaches to memory storage. Trends Genet 15:463–470

    Article  PubMed  Google Scholar 

  • McEachern JC, Shaw CA (1999) The plasticity-pathology continuum: defining a role for the LTP phenomenon. J Neurosci Res 58:42–61

    Article  PubMed  Google Scholar 

  • McEchron MD, Bouwmeester H, Tseng W, Weiss C, Disterhoft JF (1998) Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus 8:638–646

    Article  PubMed  Google Scholar 

  • McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251

    Article  PubMed  Google Scholar 

  • McGaugh JL, Izquierdo I (2000) The contribution of pharmacology to research on the mechanisms of memory formation. Trends Pharmacol Sci 21:208–210

    Article  PubMed  Google Scholar 

  • McGaugh JL, Roozendaal B (2002) Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12:205–210

    Article  PubMed  Google Scholar 

  • McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22

    Article  Google Scholar 

  • McKinney WT Jr, Bunney WE Jr (1969) Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry 21:240–248

    PubMed  Google Scholar 

  • Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192

    Article  PubMed  Google Scholar 

  • Medina JF, Christopher RJ, Mauk MD, LeDoux JE (2002) Parallels between cerebellum-and amygdala-dependent conditioning. Nat Rev Neurosci 3:122–131

    Article  PubMed  Google Scholar 

  • Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74

    Article  PubMed  Google Scholar 

  • Milekic MH, Alberini CM (2002) Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36:521–525

    Article  PubMed  Google Scholar 

  • Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468

    Article  PubMed  Google Scholar 

  • Moita MA, Rosis S, Zhou Y, LeDoux JE, Blair HT (2003) Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron 37:485–497

    Article  PubMed  Google Scholar 

  • Montkowski A, Poettig M, Mederer A, Holsboer F (1997) Behavioural performance in three substrains of mouse strain 129. Brain Res 762:12–18

    Article  PubMed  Google Scholar 

  • Morgan MA, LeDoux JE (1995) Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 109:681–688

    Article  PubMed  Google Scholar 

  • Morrow BA, Elsworth JD, Rasmusson AM, Roth RH (1999) The role of mesoprefrontal dopamine neurons in the acquisition and expression of conditioned fear in the rat. Neuroscience 92:553–564

    Article  PubMed  Google Scholar 

  • Muller Igaz L, Vianna MR, Medina JH, Izquierdo I (2002) Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J Neurosci 22:6781–6789

    PubMed  Google Scholar 

  • Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA (2004) A distinct role for norepinephrine in memory retrieval. Cell 117:131–143

    Article  PubMed  Google Scholar 

  • Myers KM, Davis M (2002) Behavioral and neural analysis of extinction. Neuron 36:567–584

    Article  PubMed  Google Scholar 

  • Nader K (2003) Memory traces unbound. Trends Neurosci 26:65–72

    Article  PubMed  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726

    Article  PubMed  Google Scholar 

  • Newport DJ, Stowe ZN, Nemeroff CB (2002) Parental depression: animal models of an adverse life event. Am J Psychiatry 159:1265–1283

    Article  PubMed  Google Scholar 

  • Ohl FW, Scheich H, Freeman WJ (2001) Change in pattern of ongoing cortical activity with auditory category learning. Nature 412:733–736

    Article  PubMed  Google Scholar 

  • Owen EH, Logue SF, Rasmussen DL, Wehner JM (1997) Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neuroscience 80:1087–1099

    Article  PubMed  Google Scholar 

  • Pare D, Collins DR, Pelletier JG (2002) Amygdala oscillations and the consolidation of emotional memories. Trends Cogn Sci 6:306–314

    Article  PubMed  Google Scholar 

  • Paylor R, Tracy R, Wehner J, Rudy JW (1994) DBA/2 and C57BL/6 mice differ in contextual fear but not auditory fear conditioning. Behav Neurosci 108:810–817

    Article  PubMed  Google Scholar 

  • Pérez-Jaranay JM, Vives F (1991) Electrophysiological study of the response of medial prefrontal cortex neurons to stimulation of the basolateral nucleus of the amygdala in the rat. Brain Res 564:97–101

    Article  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  PubMed  Google Scholar 

  • Picciotto MR, Wickman K (1998) Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 78:1131–1163

    PubMed  Google Scholar 

  • Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (ed) The amygdala. A functional analysis. Oxford University Press, New York, p 31–115

    Google Scholar 

  • Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20:6225–6231

    PubMed  Google Scholar 

  • Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ (2000) Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3:238–244

    Article  PubMed  Google Scholar 

  • Rescorla RA (1988) Pavlovian conditioning: it's not what you think it is. Am Psychol 43:151–160

    Article  PubMed  Google Scholar 

  • Ressler KJ, Paschall G, Zhou XL, Davis M (2002) Regulation of synaptic plasticity genes during consolidation of fear conditioning. J Neurosci 22:7892–7902

    PubMed  Google Scholar 

  • Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M (2004) Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry 61:1136–1144

    Article  PubMed  Google Scholar 

  • Richardson R, Ledgerwood L, Cranney J (2004) Facilitation of fear extinction by d-cycloserine: theoretical and clinical implications. Learn Mem 11:510–516

    Article  PubMed  Google Scholar 

  • Riedel G, Micheau J, Lam AG, Roloff E, Martin SJ, Bridge H, Hoz L, Poeschel B, McCulloch J, Morris RG (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 2:898–905

    Article  PubMed  Google Scholar 

  • Roberson ED, Sweatt JD (1999) A biochemical blueprint for long-term memory. Learn Mem 6:381–388

    PubMed  Google Scholar 

  • Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala [see comments] [published erratum appears in Nature 1998 Feb 19;391(6669):818]. Nature 390:604–607

    Article  PubMed  Google Scholar 

  • Rose SP (2000) God's organism? The chick as a model system for memory studies. Learn Mem 7:1–17

    Article  PubMed  Google Scholar 

  • Rose SP, Stewart MG (1999) Cellular correlates of stages of memory formation in the chick following passive avoidance training. Behav Brain Res 98:237–243

    Article  PubMed  Google Scholar 

  • Rosen JB, Schulkin J (1998) From normal fear to pathological anxiety. Psychol Rev 105:325–350

    Article  PubMed  Google Scholar 

  • Rosenkranz JA, Grace AA (2002) Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature 417:282–287

    Article  PubMed  Google Scholar 

  • Rothbaum BO, Schwartz AC (2002) Exposure therapy for posttraumatic stress disorder. Am J Psychother 56:59–75

    PubMed  Google Scholar 

  • Routtenberg A (2002) Targeting the “species gene ensemble”. Hippocampus 12:105–108

    Article  PubMed  Google Scholar 

  • Sacchetti B, Lorenzini CA, Baldi E, Tassoni G, Bucherelli C (1999) Auditory thalamus, dorsal hippocampus, basolateral amygdala, and perirhinal cortex role in the consolidation of conditioned freezing to context and to acoustic conditioned stimulus in the rat. JNeurosci 19:9570–9578

    Google Scholar 

  • Sacchetti B, Lorenzini CA, Baldi E, Bucherelli C, Roberto M, Tassoni G, Brunelli M (2001) Long-lasting hippocampal potentiation and contextual memory consolidation. Eur J Neurosci 13:2291–2298

    Article  PubMed  Google Scholar 

  • Sanders MJ, Wiltgen BJ, Fanselow MS (2003) The place of the hippocampus in fear conditioning. Eur J Pharmacol 463:217–223

    Article  PubMed  Google Scholar 

  • Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7:73–84

    Article  PubMed  Google Scholar 

  • Schacter DL (1987) Implicit memory: history and current status. J Exp Psychol 13:501–518

    Google Scholar 

  • Schafe GE, LeDoux JE (2000) Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci 20:RC96

    Google Scholar 

  • Schafe GE, Nader K, Blair HT, LeDoux JE (2001) Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci 24:540–546

    Article  PubMed  Google Scholar 

  • Schwaerzel M, Heisenberg M, Zars T (2002) Extinction antagonizes olfactory memory at the subcellular level. Neuron 35:951–960

    Article  PubMed  Google Scholar 

  • Sejnowski TJ (1999) The book of Hebb. Neuron 24:773–776

    Article  PubMed  Google Scholar 

  • Sejnowski TJ, Destexhe A (2000) Why do we sleep? Brain Res 886:208–223

    Article  PubMed  Google Scholar 

  • Sharp FR, Sagar SM, Swanson RA (1993) Metabolic mapping with cellular resolution: c-fos vs 2-deoxyglucose. Crit Rev Neurobiol 7:205–228

    PubMed  Google Scholar 

  • Shekhar A, McCann UD, Meaney MJ, Blanchard DC, Davis M, Frey KA, Liberzon I, Overall KL, Shear MK, Tecott LH, Winsky L (2001) Summary of a National Institute of Mental Health workshop: developing animal models of anxiety disorders. Psychopharmacology (Berl) 157:327–339

    Article  PubMed  Google Scholar 

  • Shimizu E, Tang YP, Rampon C, Tsien JZ (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290:1170–1174

    Article  PubMed  Google Scholar 

  • Shobe J (2002) The role of PKA, CaMKII, and PKC in avoidance conditioning: permissive or instructive? Neurobiol Learn Mem 77:291–312

    Article  PubMed  Google Scholar 

  • Shumyatsky GP, Tsvetkov E, Malleret G, Vronskaya S, Hatton M, Hampton L, Battey JF, Dulac C, Kandel ER, Bolshakov VY (2002) Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111:905–918

    Article  PubMed  Google Scholar 

  • Silva AJ (2003) Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J Neurobiol 54:224–237

    Article  PubMed  Google Scholar 

  • Sokoloff L (2000) In vivo veritas: probing brain function through the use of quantitative in vivo biochemical techniques. Annu Rev Physiol 62:1–24

    Article  PubMed  Google Scholar 

  • Stam R, Bruijnzeel AW, Wiegant VM (2000) Long-lasting stress sensitisation. Eur J Pharmacol 405:217–224

    Article  PubMed  Google Scholar 

  • Stork O, Stork S, Pape HC, Obata K (2001) Identification of genes expressed in the amygdala during the formation of fear memory. Learn Mem 8:209–219

    Article  PubMed  Google Scholar 

  • Sutherland GR, McNaughton B (2000) Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr Opin Neurobiol 10:180–186

    Article  PubMed  Google Scholar 

  • Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331

    Article  PubMed  Google Scholar 

  • Szapiro G, Galante JM, Barros DM, Levi dS, Vianna MR, Izquierdo LA, Izquierdo I, Medina JH (2002) Molecular mechanisms of memory retrieval. Neurochem Res 27:1491–1498

    Article  PubMed  Google Scholar 

  • Tang J, Wotjak CT, Wagner S, Williams G, Schachner M, Dityatev A (2001) Potentiated amygdaloid auditory-evoked potentials and freezing behavior after fear conditioning in mice. Brain Res 919:232–241

    Article  PubMed  Google Scholar 

  • Tang J, Wagner S, Schachner M, Dityatev A, Wotjak CT (2003) Potentiation of amygdaloid and hippocampal auditory evoked potentials in a discriminatory fear-conditioning task in mice as a function of tone pattern and context. Eur J Neurosci 18:639–650

    Article  PubMed  Google Scholar 

  • Thomas E (1988) Forebrain mechanisms in the relief of fear: the role of the lateral septum. Psychobiology 16:36–44

    Google Scholar 

  • Thompson RF, Bao S, Chen L, Cipriano BD, Grethe JS, Kim JJ, Thompson JK, Tracy JA, Weninger MS, Krupa DJ (1997) Associative learning. Int Rev Neurobiol 41:151–189

    PubMed  Google Scholar 

  • Thompson RF, Swain R, Clark R, Shinkman P (2000) Intracerebellar conditioning—Brogden and Gantt revisited. Behav Brain Res 110:3–11

    Article  PubMed  Google Scholar 

  • Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34:289–300

    Article  PubMed  Google Scholar 

  • Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10:358–364

    Article  PubMed  Google Scholar 

  • Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63:241–320

    Article  PubMed  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198

    Article  PubMed  Google Scholar 

  • Vanderwolf CH, Cain DP (1994) The behavioral neurobiology of learning and memory: a conceptual reorientation. Brain Res Brain Res Rev 19:264–297

    Article  PubMed  Google Scholar 

  • Villarreal DM, Do V, Haddad E, Derrick BE (2002) NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat Neurosci 5:48–52

    Article  PubMed  Google Scholar 

  • Walker DL, Ressler KJ, Lu KT, Davis M (2002) Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of d-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 22:2343–2351

    PubMed  Google Scholar 

  • Wallenstein GV, Eichenbaum H, Hasselmo ME (1998) The hippocampus as an associator of discontiguous events. Trends Neurosci 21:317–323

    Article  PubMed  Google Scholar 

  • Wehner JM, Radcliffe RA, Bowers BJ (2001) Quantitative genetics and mouse behavior. Annu Rev Neurosci 24:845–867

    Article  PubMed  Google Scholar 

  • Weinberger NM (1998) Physiological memory in primary auditory cortex: characteristics and mechanisms. Neurobiol Learn Mem 70:226–251

    Article  PubMed  Google Scholar 

  • Welzl H, D'Adamo P, Lipp HP (2001) Conditioned taste aversion as a learning and memory paradigm. Behav Brain Res 125:205–213

    Article  PubMed  Google Scholar 

  • Whishaw IQ, Metz GA, Kolb B, Pellis SM (2001) Accelerated nervous system development contributes to behavioral efficiency in the laboratory mouse: a behavioral review and theoretical proposal. Dev Psychobiol 39:151–170

    Article  PubMed  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83:1–16

    Article  PubMed  Google Scholar 

  • Wittenberg GM, Tsien JZ (2002) An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci 25:501–505

    Article  PubMed  Google Scholar 

  • Wolfer DP, Crusio WE, Lipp HP (2002) Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 25:336–340

    Article  PubMed  Google Scholar 

  • Woolf NJ (1998) A structural basis for memory storage in mammals. Prog Neurobiol 55:59–77

    Article  PubMed  Google Scholar 

  • Wotjak CT (2003) C57BLack/BOX? The importance of exact mouse strain nomenclature. Trends Genet 19:183–184

    Article  PubMed  Google Scholar 

  • Wotjak CT (2004) Of mice and men: potentials and caveats of behavioural experiments in mice. BIF Futura 19:158–169

    Google Scholar 

  • Würbel H (2001) Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci 24:207–211

    Article  PubMed  Google Scholar 

  • Xu L, Anwyl R, Rowan MJ (1998) Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus [see comments]. Nature 394:891–894

    Article  PubMed  Google Scholar 

  • Yehuda R, Antelman SM (1993) Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biol Psychiatry 33:479–486

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wotjak, C. (2005). Learning and Memory. In: Holsboer, F., Ströhle, A. (eds) Anxiety and Anxiolytic Drugs. Handbook of Experimental Pharmacology, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28082-0_1

Download citation

Publish with us

Policies and ethics